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The Mars Climate Orbiter is pre-
pared for its mission. The laws
of physics are the same every-
where, even on Mars, so the
probe could be designed based
on the laws of physics as discov-
ered on earth. There is unfor-
tunately another reason why this
spacecraft is relevant to the top-
ics of this chapter: it was de-
stroyed attempting to enter Mars’
atmosphere because engineers
at Lockheed Martin forgot to con-
vert data on engine thrusts from
pounds into the metric unit of
force (newtons) before giving the
information to NASA. Conver-
sions are important!

Chapter 0

Introduction and review

If you drop your shoe and a coin side by side, they hit the ground at
the same time. Why doesn’t the shoe get there first, since gravity is
pulling harder on it? How does the lens of your eye work, and why
do your eye’s muscles need to squash its lens into different shapes in
order to focus on objects nearby or far away? These are the kinds
of questions that physics tries to answer about the behavior of light
and matter, the two things that the universe is made of.

0.1 The scientific method
Until very recently in history, no progress was made in answering
questions like these. Worse than that, the wrong answers written
by thinkers like the ancient Greek physicist Aristotle were accepted
without question for thousands of years. Why is it that scientific
knowledge has progressed more since the Renaissance than it had
in all the preceding millennia since the beginning of recorded his-
tory? Undoubtedly the industrial revolution is part of the answer.
Building its centerpiece, the steam engine, required improved tech-
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a / Science is a cycle of the-
ory and experiment.

b / A satirical drawing of an
alchemist’s laboratory. H. Cock,
after a drawing by Peter Brueghel
the Elder (16th century).

niques for precise construction and measurement. (Early on, it was
considered a major advance when English machine shops learned to
build pistons and cylinders that fit together with a gap narrower
than the thickness of a penny.) But even before the industrial rev-
olution, the pace of discovery had picked up, mainly because of the
introduction of the modern scientific method. Although it evolved
over time, most scientists today would agree on something like the
following list of the basic principles of the scientific method:

(1) Science is a cycle of theory and experiment. Scientific the-
ories 1 are created to explain the results of experiments that were
created under certain conditions. A successful theory will also make
new predictions about new experiments under new conditions. Even-
tually, though, it always seems to happen that a new experiment
comes along, showing that under certain conditions the theory is
not a good approximation or is not valid at all. The ball is then
back in the theorists’ court. If an experiment disagrees with the
current theory, the theory has to be changed, not the experiment.

(2) Theories should both predict and explain. The requirement of
predictive power means that a theory is only meaningful if it predicts
something that can be checked against experimental measurements
that the theorist did not already have at hand. That is, a theory
should be testable. Explanatory value means that many phenomena
should be accounted for with few basic principles. If you answer
every “why” question with “because that’s the way it is,” then your
theory has no explanatory value. Collecting lots of data without
being able to find any basic underlying principles is not science.

(3) Experiments should be reproducible. An experiment should
be treated with suspicion if it only works for one person, or only
in one part of the world. Anyone with the necessary skills and
equipment should be able to get the same results from the same
experiment. This implies that science transcends national and eth-
nic boundaries; you can be sure that nobody is doing actual science
who claims that their work is “Aryan, not Jewish,” “Marxist, not
bourgeois,” or “Christian, not atheistic.” An experiment cannot be
reproduced if it is secret, so science is necessarily a public enterprise.

As an example of the cycle of theory and experiment, a vital step
toward modern chemistry was the experimental observation that the
chemical elements could not be transformed into each other, e.g.,
lead could not be turned into gold. This led to the theory that
chemical reactions consisted of rearrangements of the elements in

1The term “theory” in science does not just mean “what someone thinks,” or
even “what a lot of scientists think.” It means an interrelated set of statements
that have predictive value, and that have survived a broad set of empirical
tests. Thus, both Newton’s law of gravity and Darwinian evolution are scientific
theories. A “hypothesis,” in contrast to a theory, is any statement of interest
that can be empirically tested. That the moon is made of cheese is a hypothesis,
which was empirically tested, for example, by the Apollo astronauts.
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different combinations, without any change in the identities of the
elements themselves. The theory worked for hundreds of years, and
was confirmed experimentally over a wide range of pressures and
temperatures and with many combinations of elements. Only in
the twentieth century did we learn that one element could be trans-
formed into one another under the conditions of extremely high
pressure and temperature existing in a nuclear bomb or inside a star.
That observation didn’t completely invalidate the original theory of
the immutability of the elements, but it showed that it was only an
approximation, valid at ordinary temperatures and pressures.

self-check A
A psychic conducts seances in which the spirits of the dead speak to
the participants. He says he has special psychic powers not possessed
by other people, which allow him to “channel” the communications with
the spirits. What part of the scientific method is being violated here?
. Answer, p. 522

The scientific method as described here is an idealization, and
should not be understood as a set procedure for doing science. Sci-
entists have as many weaknesses and character flaws as any other
group, and it is very common for scientists to try to discredit other
people’s experiments when the results run contrary to their own fa-
vored point of view. Successful science also has more to do with
luck, intuition, and creativity than most people realize, and the
restrictions of the scientific method do not stifle individuality and
self-expression any more than the fugue and sonata forms stifled
Bach and Haydn. There is a recent tendency among social scien-
tists to go even further and to deny that the scientific method even
exists, claiming that science is no more than an arbitrary social sys-
tem that determines what ideas to accept based on an in-group’s
criteria. I think that’s going too far. If science is an arbitrary social
ritual, it would seem difficult to explain its effectiveness in building
such useful items as airplanes, CD players, and sewers. If alchemy
and astrology were no less scientific in their methods than chem-
istry and astronomy, what was it that kept them from producing
anything useful?

Discussion questions
Consider whether or not the scientific method is being applied in the fol-
lowing examples. If the scientific method is not being applied, are the
people whose actions are being described performing a useful human
activity, albeit an unscientific one?

A Acupuncture is a traditional medical technique of Asian origin in
which small needles are inserted in the patient’s body to relieve pain.
Many doctors trained in the west consider acupuncture unworthy of ex-
perimental study because if it had therapeutic effects, such effects could
not be explained by their theories of the nervous system. Who is being
more scientific, the western or eastern practitioners?

Section 0.1 The scientific method 13



B Goethe, a German poet, is less well known for his theory of color.
He published a book on the subject, in which he argued that scientific
apparatus for measuring and quantifying color, such as prisms, lenses
and colored filters, could not give us full insight into the ultimate meaning
of color, for instance the cold feeling evoked by blue and green or the
heroic sentiments inspired by red. Was his work scientific?

C A child asks why things fall down, and an adult answers “because of
gravity.” The ancient Greek philosopher Aristotle explained that rocks fell
because it was their nature to seek out their natural place, in contact with
the earth. Are these explanations scientific?

D Buddhism is partly a psychological explanation of human suffering,
and psychology is of course a science. The Buddha could be said to
have engaged in a cycle of theory and experiment, since he worked by
trial and error, and even late in his life he asked his followers to challenge
his ideas. Buddhism could also be considered reproducible, since the
Buddha told his followers they could find enlightenment for themselves
if they followed a certain course of study and discipline. Is Buddhism a
scientific pursuit?

0.2 What is physics?
Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
positions of the things which compose it...nothing would be
uncertain, and the future as the past would be laid out before
its eyes.

Pierre Simon de Laplace

Physics is the use of the scientific method to find out the basic
principles governing light and matter, and to discover the implica-
tions of those laws. Part of what distinguishes the modern outlook
from the ancient mind-set is the assumption that there are rules by
which the universe functions, and that those laws can be at least par-
tially understood by humans. From the Age of Reason through the
nineteenth century, many scientists began to be convinced that the
laws of nature not only could be known but, as claimed by Laplace,
those laws could in principle be used to predict everything about
the universe’s future if complete information was available about
the present state of all light and matter. In subsequent sections,
I’ll describe two general types of limitations on prediction using the
laws of physics, which were only recognized in the twentieth century.

Matter can be defined as anything that is affected by gravity,
i.e., that has weight or would have weight if it was near the Earth
or another star or planet massive enough to produce measurable
gravity. Light can be defined as anything that can travel from one
place to another through empty space and can influence matter, but
has no weight. For example, sunlight can influence your body by
heating it or by damaging your DNA and giving you skin cancer.
The physicist’s definition of light includes a variety of phenomena

14 Chapter 0 Introduction and review



c / This telescope picture shows
two images of the same distant
object, an exotic, very luminous
object called a quasar. This is
interpreted as evidence that a
massive, dark object, possibly
a black hole, happens to be
between us and it. Light rays that
would otherwise have missed the
earth on either side have been
bent by the dark object’s gravity
so that they reach us. The actual
direction to the quasar is presum-
ably in the center of the image,
but the light along that central line
doesn’t get to us because it is
absorbed by the dark object. The
quasar is known by its catalog
number, MG1131+0456, or more
informally as Einstein’s Ring.

that are not visible to the eye, including radio waves, microwaves,
x-rays, and gamma rays. These are the “colors” of light that do not
happen to fall within the narrow violet-to-red range of the rainbow
that we can see.

self-check B
At the turn of the 20th century, a strange new phenomenon was discov-
ered in vacuum tubes: mysterious rays of unknown origin and nature.
These rays are the same as the ones that shoot from the back of your
TV’s picture tube and hit the front to make the picture. Physicists in
1895 didn’t have the faintest idea what the rays were, so they simply
named them “cathode rays,” after the name for the electrical contact
from which they sprang. A fierce debate raged, complete with national-
istic overtones, over whether the rays were a form of light or of matter.
What would they have had to do in order to settle the issue? .

Answer, p. 522

Many physical phenomena are not themselves light or matter,
but are properties of light or matter or interactions between light
and matter. For instance, motion is a property of all light and some
matter, but it is not itself light or matter. The pressure that keeps
a bicycle tire blown up is an interaction between the air and the
tire. Pressure is not a form of matter in and of itself. It is as
much a property of the tire as of the air. Analogously, sisterhood
and employment are relationships among people but are not people
themselves.

Some things that appear weightless actually do have weight, and
so qualify as matter. Air has weight, and is thus a form of matter
even though a cubic inch of air weighs less than a grain of sand. A
helium balloon has weight, but is kept from falling by the force of the
surrounding more dense air, which pushes up on it. Astronauts in
orbit around the Earth have weight, and are falling along a curved
arc, but they are moving so fast that the curved arc of their fall
is broad enough to carry them all the way around the Earth in a
circle. They perceive themselves as being weightless because their
space capsule is falling along with them, and the floor therefore does
not push up on their feet.

Optional Topic: Modern Changes in the Definition of Light and
Matter
Einstein predicted as a consequence of his theory of relativity that light
would after all be affected by gravity, although the effect would be ex-
tremely weak under normal conditions. His prediction was borne out
by observations of the bending of light rays from stars as they passed
close to the sun on their way to the Earth. Einstein’s theory also implied
the existence of black holes, stars so massive and compact that their
intense gravity would not even allow light to escape. (These days there
is strong evidence that black holes exist.)

Einstein’s interpretation was that light doesn’t really have mass, but
that energy is affected by gravity just like mass is. The energy in a light

Section 0.2 What is physics? 15



d / Reductionism.

beam is equivalent to a certain amount of mass, given by the famous
equation E = mc2, where c is the speed of light. Because the speed
of light is such a big number, a large amount of energy is equivalent to
only a very small amount of mass, so the gravitational force on a light
ray can be ignored for most practical purposes.

There is however a more satisfactory and fundamental distinction
between light and matter, which should be understandable to you if you
have had a chemistry course. In chemistry, one learns that electrons
obey the Pauli exclusion principle, which forbids more than one electron
from occupying the same orbital if they have the same spin. The Pauli
exclusion principle is obeyed by the subatomic particles of which matter
is composed, but disobeyed by the particles, called photons, of which a
beam of light is made.

Einstein’s theory of relativity is discussed more fully in book 6 of this
series.

The boundary between physics and the other sciences is not
always clear. For instance, chemists study atoms and molecules,
which are what matter is built from, and there are some scientists
who would be equally willing to call themselves physical chemists
or chemical physicists. It might seem that the distinction between
physics and biology would be clearer, since physics seems to deal
with inanimate objects. In fact, almost all physicists would agree
that the basic laws of physics that apply to molecules in a test tube
work equally well for the combination of molecules that constitutes
a bacterium. (Some might believe that something more happens in
the minds of humans, or even those of cats and dogs.) What differ-
entiates physics from biology is that many of the scientific theories
that describe living things, while ultimately resulting from the fun-
damental laws of physics, cannot be rigorously derived from physical
principles.

Isolated systems and reductionism

To avoid having to study everything at once, scientists isolate the
things they are trying to study. For instance, a physicist who wants
to study the motion of a rotating gyroscope would probably prefer
that it be isolated from vibrations and air currents. Even in biology,
where field work is indispensable for understanding how living things
relate to their entire environment, it is interesting to note the vital
historical role played by Darwin’s study of the Galápagos Islands,
which were conveniently isolated from the rest of the world. Any
part of the universe that is considered apart from the rest can be
called a “system.”

Physics has had some of its greatest successes by carrying this
process of isolation to extremes, subdividing the universe into smaller
and smaller parts. Matter can be divided into atoms, and the be-
havior of individual atoms can be studied. Atoms can be split apart
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into their constituent neutrons, protons and electrons. Protons and
neutrons appear to be made out of even smaller particles called
quarks, and there have even been some claims of experimental ev-
idence that quarks have smaller parts inside them. This method
of splitting things into smaller and smaller parts and studying how
those parts influence each other is called reductionism. The hope is
that the seemingly complex rules governing the larger units can be
better understood in terms of simpler rules governing the smaller
units. To appreciate what reductionism has done for science, it is
only necessary to examine a 19th-century chemistry textbook. At
that time, the existence of atoms was still doubted by some, elec-
trons were not even suspected to exist, and almost nothing was
understood of what basic rules governed the way atoms interacted
with each other in chemical reactions. Students had to memorize
long lists of chemicals and their reactions, and there was no way to
understand any of it systematically. Today, the student only needs
to remember a small set of rules about how atoms interact, for in-
stance that atoms of one element cannot be converted into another
via chemical reactions, or that atoms from the right side of the pe-
riodic table tend to form strong bonds with atoms from the left
side.

Discussion questions

A I’ve suggested replacing the ordinary dictionary definition of light
with a more technical, more precise one that involves weightlessness. It’s
still possible, though, that the stuff a lightbulb makes, ordinarily called
“light,” does have some small amount of weight. Suggest an experiment
to attempt to measure whether it does.

B Heat is weightless (i.e., an object becomes no heavier when heated),
and can travel across an empty room from the fireplace to your skin,
where it influences you by heating you. Should heat therefore be con-
sidered a form of light by our definition? Why or why not?

C Similarly, should sound be considered a form of light?

0.3 How to learn physics
For as knowledges are now delivered, there is a kind of con-
tract of error between the deliverer and the receiver; for he
that delivereth knowledge desireth to deliver it in such a form
as may be best believed, and not as may be best examined;
and he that receiveth knowledge desireth rather present sat-
isfaction than expectant inquiry.

Francis Bacon

Many students approach a science course with the idea that they
can succeed by memorizing the formulas, so that when a problem
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is assigned on the homework or an exam, they will be able to plug
numbers in to the formula and get a numerical result on their cal-
culator. Wrong! That’s not what learning science is about! There
is a big difference between memorizing formulas and understanding
concepts. To start with, different formulas may apply in different
situations. One equation might represent a definition, which is al-
ways true. Another might be a very specific equation for the speed
of an object sliding down an inclined plane, which would not be true
if the object was a rock drifting down to the bottom of the ocean.
If you don’t work to understand physics on a conceptual level, you
won’t know which formulas can be used when.

Most students taking college science courses for the first time
also have very little experience with interpreting the meaning of an
equation. Consider the equation w = A/h relating the width of a
rectangle to its height and area. A student who has not developed
skill at interpretation might view this as yet another equation to
memorize and plug in to when needed. A slightly more savvy stu-
dent might realize that it is simply the familiar formula A = wh
in a different form. When asked whether a rectangle would have
a greater or smaller width than another with the same area but
a smaller height, the unsophisticated student might be at a loss,
not having any numbers to plug in on a calculator. The more ex-
perienced student would know how to reason about an equation
involving division — if h is smaller, and A stays the same, then w
must be bigger. Often, students fail to recognize a sequence of equa-
tions as a derivation leading to a final result, so they think all the
intermediate steps are equally important formulas that they should
memorize.

When learning any subject at all, it is important to become as
actively involved as possible, rather than trying to read through
all the information quickly without thinking about it. It is a good
idea to read and think about the questions posed at the end of each
section of these notes as you encounter them, so that you know you
have understood what you were reading.

Many students’ difficulties in physics boil down mainly to diffi-
culties with math. Suppose you feel confident that you have enough
mathematical preparation to succeed in this course, but you are
having trouble with a few specific things. In some areas, the brief
review given in this chapter may be sufficient, but in other areas
it probably will not. Once you identify the areas of math in which
you are having problems, get help in those areas. Don’t limp along
through the whole course with a vague feeling of dread about some-
thing like scientific notation. The problem will not go away if you
ignore it. The same applies to essential mathematical skills that you
are learning in this course for the first time, such as vector addition.

Sometimes students tell me they keep trying to understand a
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certain topic in the book, and it just doesn’t make sense. The worst
thing you can possibly do in that situation is to keep on staring
at the same page. Every textbook explains certain things badly —
even mine! — so the best thing to do in this situation is to look
at a different book. Instead of college textbooks aimed at the same
mathematical level as the course you’re taking, you may in some
cases find that high school books or books at a lower math level
give clearer explanations.

Finally, when reviewing for an exam, don’t simply read back
over the text and your lecture notes. Instead, try to use an active
method of reviewing, for instance by discussing some of the discus-
sion questions with another student, or doing homework problems
you hadn’t done the first time.

0.4 Self-evaluation
The introductory part of a book like this is hard to write, because
every student arrives at this starting point with a different prepara-
tion. One student may have grown up outside the U.S. and so may
be completely comfortable with the metric system, but may have
had an algebra course in which the instructor passed too quickly
over scientific notation. Another student may have already taken
calculus, but may have never learned the metric system. The fol-
lowing self-evaluation is a checklist to help you figure out what you
need to study to be prepared for the rest of the course.

If you disagree with this state-
ment. . .

you should study this section:

I am familiar with the basic metric
units of meters, kilograms, and sec-
onds, and the most common metric
prefixes: milli- (m), kilo- (k), and
centi- (c).

section 0.5 Basic of the Metric Sys-
tem

I know about the newton, a unit of
force

section 0.6 The newton, the Metric
Unit of Force

I am familiar with these less com-
mon metric prefixes: mega- (M),
micro- (µ), and nano- (n).

section 0.7 Less Common Metric
Prefixes

I am comfortable with scientific no-
tation.

section 0.8 Scientific Notation

I can confidently do metric conver-
sions.

section 0.9 Conversions

I understand the purpose and use of
significant figures.

section 0.10 Significant Figures

It wouldn’t hurt you to skim the sections you think you already
know about, and to do the self-checks in those sections.
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0.5 Basics of the metric system
The metric system

Units were not standardized until fairly recently in history, so
when the physicist Isaac Newton gave the result of an experiment
with a pendulum, he had to specify not just that the string was 37
7/8 inches long but that it was “37 7/8 London inches long.” The
inch as defined in Yorkshire would have been different. Even after
the British Empire standardized its units, it was still very inconve-
nient to do calculations involving money, volume, distance, time, or
weight, because of all the odd conversion factors, like 16 ounces in
a pound, and 5280 feet in a mile. Through the nineteenth century,
schoolchildren squandered most of their mathematical education in
preparing to do calculations such as making change when a customer
in a shop offered a one-crown note for a book costing two pounds,
thirteen shillings and tuppence. The dollar has always been decimal,
and British money went decimal decades ago, but the United States
is still saddled with the antiquated system of feet, inches, pounds,
ounces and so on.

Every country in the world besides the U.S. uses a system of
units known in English as the “metric system.2” This system is
entirely decimal, thanks to the same eminently logical people who
brought about the French Revolution. In deference to France, the
system’s official name is the Système International, or SI, meaning
International System. (The phrase “SI system” is therefore redun-
dant.)

The wonderful thing about the SI is that people who live in
countries more modern than ours do not need to memorize how
many ounces there are in a pound, how many cups in a pint, how
many feet in a mile, etc. The whole system works with a single,
consistent set of Greek and Latin prefixes that modify the basic
units. Each prefix stands for a power of ten, and has an abbreviation
that can be combined with the symbol for the unit. For instance,
the meter is a unit of distance. The prefix kilo- stands for 103, so a
kilometer, 1 km, is a thousand meters.

The basic units of the metric system are the meter for distance,
the second for time, and the gram for mass.

The following are the most common metric prefixes. You should
memorize them.

prefix meaning example
kilo- k 103 60 kg = a person’s mass
centi- c 10−2 28 cm = height of a piece of paper
milli- m 10−3 1 ms = time for one vibration of a guitar

string playing the note D

2Liberia and Myanmar have not legally adopted metric units, but use them
in everyday life.
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e / The original definition of
the meter.

The prefix centi-, meaning 10−2, is only used in the centimeter;
a hundredth of a gram would not be written as 1 cg but as 10 mg.
The centi- prefix can be easily remembered because a cent is 10−2

dollars. The official SI abbreviation for seconds is “s” (not “sec”)
and grams are “g” (not “gm”).

The second

When I stated briefly above that the second was a unit of time, it
may not have occurred to you that this was not much of a definition.
We can make a dictionary-style definition of a term like “time,” or
give a general description like Isaac Newton’s: “Absolute, true, and
mathematical time, of itself, and from its own nature, flows equably
without relation to anything external. . . ” Newton’s characterization
sounds impressive, but physicists today would consider it useless as
a definition of time. Today, the physical sciences are based on oper-
ational definitions, which means definitions that spell out the actual
steps (operations) required to measure something numerically.

In an era when our toasters, pens, and coffee pots tell us the
time, it is far from obvious to most people what is the fundamental
operational definition of time. Until recently, the hour, minute, and
second were defined operationally in terms of the time required for
the earth to rotate about its axis. Unfortunately, the Earth’s ro-
tation is slowing down slightly, and by 1967 this was becoming an
issue in scientific experiments requiring precise time measurements.
The second was therefore redefined as the time required for a cer-
tain number of vibrations of the light waves emitted by a cesium
atoms in a lamp constructed like a familiar neon sign but with the
neon replaced by cesium. The new definition not only promises to
stay constant indefinitely, but for scientists is a more convenient
way of calibrating a clock than having to carry out astronomical
measurements.

self-check C
What is a possible operational definition of how strong a person is? .

Answer, p. 523

The meter

The French originally defined the meter as 10−7 times the dis-
tance from the equator to the north pole, as measured through Paris
(of course). Even if the definition was operational, the operation of
traveling to the north pole and laying a surveying chain behind you
was not one that most working scientists wanted to carry out. Fairly
soon, a standard was created in the form of a metal bar with two
scratches on it. This was replaced by an atomic standard in 1960,
and finally in 1983 by the current definition, which is that the me-
ter is the distance traveled by light in a vacuum over a period of
(1/299792458) seconds.
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f / A duplicate of the Paris
kilogram, maintained at the Dan-
ish National Metrology Institute.

The kilogram

The third base unit of the SI is the kilogram, a unit of mass.
Mass is intended to be a measure of the amount of a substance,
but that is not an operational definition. Bathroom scales work by
measuring our planet’s gravitational attraction for the object being
weighed, but using that type of scale to define mass operationally
would be undesirable because gravity varies in strength from place
to place on the earth.

There’s a surprising amount of disagreement among physics text-
books about how mass should be defined, but here’s how it’s actually
handled by the few working physicists who specialize in ultra-high-
precision measurements. They maintain a physical object in Paris,
which is the standard kilogram, a cylinder made of platinum-iridium
alloy. Duplicates are checked against this mother of all kilograms
by putting the original and the copy on the two opposite pans of a
balance. Although this method of comparison depends on gravity,
the problems associated with differences in gravity in different geo-
graphical locations are bypassed, because the two objects are being
compared in the same place. The duplicates can then be removed
from the Parisian kilogram shrine and transported elsewhere in the
world. It would be desirable to replace this at some point with a
universally accessible atomic standard rather than one based on a
specific artifact, but as of 2010 the technology for automated count-
ing of large numbers of atoms has not gotten good enough to make
that work with the desired precision.

Combinations of metric units

Just about anything you want to measure can be measured with
some combination of meters, kilograms, and seconds. Speed can be
measured in m/s, volume in m3, and density in kg/m3. Part of what
makes the SI great is this basic simplicity. No more funny units like
a cord of wood, a bolt of cloth, or a jigger of whiskey. No more
liquid and dry measure. Just a simple, consistent set of units. The
SI measures put together from meters, kilograms, and seconds make
up the mks system. For example, the mks unit of speed is m/s, not
km/hr.

Checking units

A useful technique for finding mistakes in one’s algebra is to
analyze the units associated with the variables.
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Checking units example 1
. Jae starts from the formula V = 1

3Ah for the volume of a cone,
where A is the area of its base, and h is its height. He wants to
find an equation that will tell him how tall a conical tent has to be
in order to have a certain volume, given its radius. His algebra
goes like this:

V =
1
3

Ah[1]

A = πr2[2]

V =
1
3
πr2h[3]

h =
πr2

3V
[4]

Is his algebra correct? If not, find the mistake.

. Line 4 is supposed to be an equation for the height, so the units
of the expression on the right-hand side had better equal meters.
The pi and the 3 are unitless, so we can ignore them. In terms of
units, line 4 becomes

m =
m2

m3 =
1
m

.

This is false, so there must be a mistake in the algebra. The units
of lines 1, 2, and 3 check out, so the mistake must be in the step
from line 3 to line 4. In fact the result should have been

h =
3V
πr2 .

Now the units check: m = m3/m2.

Discussion question

A Isaac Newton wrote, “. . . the natural days are truly unequal, though
they are commonly considered as equal, and used for a measure of
time. . . It may be that there is no such thing as an equable motion, whereby
time may be accurately measured. All motions may be accelerated or re-
tarded. . . ” Newton was right. Even the modern definition of the second
in terms of light emitted by cesium atoms is subject to variation. For in-
stance, magnetic fields could cause the cesium atoms to emit light with
a slightly different rate of vibration. What makes us think, though, that a
pendulum clock is more accurate than a sundial, or that a cesium atom
is a more accurate timekeeper than a pendulum clock? That is, how can
one test experimentally how the accuracies of different time standards
compare?
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g / This is a mnemonic to
help you remember the most im-
portant metric prefixes. The word
“little” is to remind you that the
list starts with the prefixes used
for small quantities and builds
upward. The exponent changes
by 3, except that of course that
we do not need a special prefix
for 100, which equals one.

0.6 The Newton, the metric unit of force
A force is a push or a pull, or more generally anything that can
change an object’s speed or direction of motion. A force is required
to start a car moving, to slow down a baseball player sliding in to
home base, or to make an airplane turn. (Forces may fail to change
an object’s motion if they are canceled by other forces, e.g., the
force of gravity pulling you down right now is being canceled by the
force of the chair pushing up on you.) The metric unit of force is
the Newton, defined as the force which, if applied for one second,
will cause a 1-kilogram object starting from rest to reach a speed of
1 m/s. Later chapters will discuss the force concept in more detail.
In fact, this entire book is about the relationship between force and
motion.

In section 0.5, I gave a gravitational definition of mass, but by
defining a numerical scale of force, we can also turn around and de-
fine a scale of mass without reference to gravity. For instance, if a
force of two Newtons is required to accelerate a certain object from
rest to 1 m/s in 1 s, then that object must have a mass of 2 kg.
From this point of view, mass characterizes an object’s resistance
to a change in its motion, which we call inertia or inertial mass.
Although there is no fundamental reason why an object’s resistance
to a change in its motion must be related to how strongly gravity
affects it, careful and precise experiments have shown that the in-
ertial definition and the gravitational definition of mass are highly
consistent for a variety of objects. It therefore doesn’t really matter
for any practical purpose which definition one adopts.

Discussion question

A Spending a long time in weightlessness is unhealthy. One of the
most important negative effects experienced by astronauts is a loss of
muscle and bone mass. Since an ordinary scale won’t work for an astro-
naut in orbit, what is a possible way of monitoring this change in mass?
(Measuring the astronaut’s waist or biceps with a measuring tape is not
good enough, because it doesn’t tell anything about bone mass, or about
the replacement of muscle with fat.)

0.7 Less common metric prefixes

The following are three metric prefixes which, while less common
than the ones discussed previously, are well worth memorizing.

prefix meaning example
mega- M 106 6.4 Mm = radius of the earth
micro- µ 10−6 10 µm = size of a white blood cell
nano- n 10−9 0.154 nm = distance between carbon

nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu, µ
— a common mistake is to confuse it with m (milli) or M (mega).
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There are other prefixes even less common, used for extremely
large and small quantities. For instance, 1 femtometer = 10−15 m is
a convenient unit of distance in nuclear physics, and 1 gigabyte =
109 bytes is used for computers’ hard disks. The international com-
mittee that makes decisions about the SI has recently even added
some new prefixes that sound like jokes, e.g., 1 yoctogram = 10−24 g
is about half the mass of a proton. In the immediate future, how-
ever, you’re unlikely to see prefixes like “yocto-” and “zepto-” used
except perhaps in trivia contests at science-fiction conventions or
other geekfests.

self-check D
Suppose you could slow down time so that according to your perception,
a beam of light would move across a room at the speed of a slow walk.
If you perceived a nanosecond as if it was a second, how would you
perceive a microsecond? . Answer, p. 523

0.8 Scientific notation
Most of the interesting phenomena in our universe are not on the
human scale. It would take about 1,000,000,000,000,000,000,000
bacteria to equal the mass of a human body. When the physicist
Thomas Young discovered that light was a wave, it was back in the
bad old days before scientific notation, and he was obliged to write
that the time required for one vibration of the wave was 1/500 of
a millionth of a millionth of a second. Scientific notation is a less
awkward way to write very large and very small numbers such as
these. Here’s a quick review.

Scientific notation means writing a number in terms of a product
of something from 1 to 10 and something else that is a power of ten.
For instance,

32 = 3.2× 101

320 = 3.2× 102

3200 = 3.2× 103 . . .

Each number is ten times bigger than the previous one.

Since 101 is ten times smaller than 102 , it makes sense to use
the notation 100 to stand for one, the number that is in turn ten
times smaller than 101 . Continuing on, we can write 10−1 to stand
for 0.1, the number ten times smaller than 100 . Negative exponents
are used for small numbers:

3.2 = 3.2× 100

0.32 = 3.2× 10−1

0.032 = 3.2× 10−2 . . .
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A common source of confusion is the notation used on the dis-
plays of many calculators. Examples:

3.2× 106 (written notation)
3.2E+6 (notation on some calculators)
3.26 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26 really
stands for the number 3.2 × 3.2 × 3.2 × 3.2 × 3.2 × 3.2 = 1074, a
totally different number from 3.2 × 106 = 3200000. The calculator
notation should never be used in writing. It’s just a way for the
manufacturer to save money by making a simpler display.

self-check E
A student learns that 104 bacteria, standing in line to register for classes
at Paramecium Community College, would form a queue of this size:

The student concludes that 102 bacteria would form a line of this length:

Why is the student incorrect? . Answer, p. 523

0.9 Conversions
Conversions are one of the three essential mathematical skills, sum-
marized on pp.504-505, that you need for success in this course.

I suggest you avoid memorizing lots of conversion factors be-
tween SI units and U.S. units, but two that do come in handy are:

1 inch = 2.54 cm

An object with a weight on Earth of 2.2 pounds-force has a
mass of 1 kg.

The first one is the present definition of the inch, so it’s exact. The
second one is not exact, but is good enough for most purposes. (U.S.
units of force and mass are confusing, so it’s a good thing they’re
not used in science. In U.S. units, the unit of force is the pound-
force, and the best unit to use for mass is the slug, which is about
14.6 kg.)

More important than memorizing conversion factors is under-
standing the right method for doing conversions. Even within the
SI, you may need to convert, say, from grams to kilograms. Differ-
ent people have different ways of thinking about conversions, but
the method I’ll describe here is systematic and easy to understand.
The idea is that if 1 kg and 1000 g represent the same mass, then

26 Chapter 0 Introduction and review



we can consider a fraction like

103 g

1 kg

to be a way of expressing the number one. This may bother you. For
instance, if you type 1000/1 into your calculator, you will get 1000,
not one. Again, different people have different ways of thinking
about it, but the justification is that it helps us to do conversions,
and it works! Now if we want to convert 0.7 kg to units of grams,
we can multiply kg by the number one:

0.7 kg× 103 g

1 kg

If you’re willing to treat symbols such as “kg” as if they were vari-
ables as used in algebra (which they’re really not), you can then
cancel the kg on top with the kg on the bottom, resulting in

0.7��kg× 103 g

1��kg
= 700 g .

To convert grams to kilograms, you would simply flip the fraction
upside down.

One advantage of this method is that it can easily be applied to
a series of conversions. For instance, to convert one year to units of
seconds,

1���year× 365��
�days

1���year
× 24���hours

1��day
× 60���min

1���hour
× 60 s

1���min
=

= 3.15× 107 s .

Should that exponent be positive, or negative?

A common mistake is to write the conversion fraction incorrectly.
For instance the fraction

103 kg

1 g
(incorrect)

does not equal one, because 103 kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
factor would be

10−3 kg

1 g
(correct) .

You can usually detect such a mistake if you take the time to check
your answer and see if it is reasonable.

If common sense doesn’t rule out either a positive or a negative
exponent, here’s another way to make sure you get it right. There
are big prefixes and small prefixes:
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big prefixes: k M
small prefixes: m µ n

(It’s not hard to keep straight which are which, since “mega” and
“micro” are evocative, and it’s easy to remember that a kilometer
is bigger than a meter and a millimeter is smaller.) In the example
above, we want the top of the fraction to be the same as the bottom.
Since k is a big prefix, we need to compensate by putting a small
number like 10−3 in front of it, not a big number like 103.

. Solved problem: a simple conversion page 33, problem 1

. Solved problem: the geometric mean page 33, problem 7

Discussion question

A Each of the following conversions contains an error. In each case,
explain what the error is.

(a) 1000 kg× 1 kg
1000 g = 1 g

(b) 50 m× 1 cm
100 m = 0.5 cm

(c) “Nano” is 10−9, so there are 10−9 nm in a meter.

(d) “Micro” is 10−6, so 1 kg is 106 µg.

0.10 Significant figures
An engineer is designing a car engine, and has been told that the
diameter of the pistons (which are being designed by someone else)
is 5 cm. He knows that 0.02 cm of clearance is required for a piston
of this size, so he designs the cylinder to have an inside diameter of
5.04 cm. Luckily, his supervisor catches his mistake before the car
goes into production. She explains his error to him, and mentally
puts him in the “do not promote” category.

What was his mistake? The person who told him the pistons
were 5 cm in diameter was wise to the ways of significant figures,
as was his boss, who explained to him that he needed to go back
and get a more accurate number for the diameter of the pistons.
That person said “5 cm” rather than “5.00 cm” specifically to avoid
creating the impression that the number was extremely accurate. In
reality, the pistons’ diameter was 5.13 cm. They would never have
fit in the 5.04-cm cylinders.

The number of digits of accuracy in a number is referred to as
the number of significant figures, or “sig figs” for short. As in the
example above, sig figs provide a way of showing the accuracy of a
number. In most cases, the result of a calculation involving several
pieces of data can be no more accurate than the least accurate piece
of data. In other words, “garbage in, garbage out.” Since the 5
cm diameter of the pistons was not very accurate, the result of the
engineer’s calculation, 5.04 cm, was really not as accurate as he
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thought. In general, your result should not have more than the
number of sig figs in the least accurate piece of data you started
with. The calculation above should have been done as follows:

5 cm (1 sig fig)

+0.04 cm (1 sig fig)

=5 cm (rounded off to 1 sig fig)

The fact that the final result only has one significant figure then
alerts you to the fact that the result is not very accurate, and would
not be appropriate for use in designing the engine.

Note that the leading zeroes in the number 0.04 do not count
as significant figures, because they are only placeholders. On the
other hand, a number such as 50 cm is ambiguous — the zero could
be intended as a significant figure, or it might just be there as a
placeholder. The ambiguity involving trailing zeroes can be avoided
by using scientific notation, in which 5 × 101 cm would imply one
sig fig of accuracy, while 5.0× 101 cm would imply two sig figs.

self-check F
The following quote is taken from an editorial by Norimitsu Onishi in the
New York Times, August 18, 2002.

Consider Nigeria. Everyone agrees it is Africa’s most populous
nation. But what is its population? The United Nations says
114 million; the State Department, 120 million. The World Bank
says 126.9 million, while the Central Intelligence Agency puts it
at 126,635,626.

What should bother you about this? . Answer, p. 523

Dealing correctly with significant figures can save you time! Of-
ten, students copy down numbers from their calculators with eight
significant figures of precision, then type them back in for a later
calculation. That’s a waste of time, unless your original data had
that kind of incredible precision.

The rules about significant figures are only rules of thumb, and
are not a substitute for careful thinking. For instance, $20.00 +
$0.05 is $20.05. It need not and should not be rounded off to $20.
In general, the sig fig rules work best for multiplication and division,
and we also apply them when doing a complicated calculation that
involves many types of operations. For simple addition and subtrac-
tion, it makes more sense to maintain a fixed number of digits after
the decimal point.

When in doubt, don’t use the sig fig rules at all. Instead, in-
tentionally change one piece of your initial data by the maximum
amount by which you think it could have been off, and recalculate
the final result. The digits on the end that are completely reshuffled
are the ones that are meaningless, and should be omitted.
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self-check G
How many significant figures are there in each of the following mea-
surements?

(1) 9.937 m

(2) 4.0 s

(3) 0.0000000000000037 kg . Answer, p. 523
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Summary
Selected vocabulary
matter . . . . . . Anything that is affected by gravity.
light . . . . . . . . Anything that can travel from one place to an-

other through empty space and can influence
matter, but is not affected by gravity.

operational defi-
nition . . . . . . .

A definition that states what operations
should be carried out to measure the thing be-
ing defined.

Système Interna-
tional . . . . . . .

A fancy name for the metric system.

mks system . . . The use of metric units based on the meter,
kilogram, and second. Example: meters per
second is the mks unit of speed, not cm/s or
km/hr.

mass . . . . . . . A numerical measure of how difficult it is to
change an object’s motion.

significant figures Digits that contribute to the accuracy of a
measurement.

Notation
m . . . . . . . . . meter, the metric distance unit
kg . . . . . . . . . kilogram, the metric unit of mass
s . . . . . . . . . . second, the metric unit of time
M- . . . . . . . . . the metric prefix mega-, 106

k- . . . . . . . . . the metric prefix kilo-, 103

m- . . . . . . . . . the metric prefix milli-, 10−3

µ- . . . . . . . . . the metric prefix micro-, 10−6

n- . . . . . . . . . the metric prefix nano-, 10−9

Summary

Physics is the use of the scientific method to study the behavior
of light and matter. The scientific method requires a cycle of the-
ory and experiment, theories with both predictive and explanatory
value, and reproducible experiments.

The metric system is a simple, consistent framework for measure-
ment built out of the meter, the kilogram, and the second plus a set
of prefixes denoting powers of ten. The most systematic method for
doing conversions is shown in the following example:

370 ms× 10−3 s

1 ms
= 0.37 s

Mass is a measure of the amount of a substance. Mass can be
defined gravitationally, by comparing an object to a standard mass
on a double-pan balance, or in terms of inertia, by comparing the
effect of a force on an object to the effect of the same force on a
standard mass. The two definitions are found experimentally to
be proportional to each other to a high degree of precision, so we
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usually refer simply to “mass,” without bothering to specify which
type.

A force is that which can change the motion of an object. The
metric unit of force is the Newton, defined as the force required to
accelerate a standard 1-kg mass from rest to a speed of 1 m/s in 1
s.

Scientific notation means, for example, writing 3.2× 105 rather
than 320000.

Writing numbers with the correct number of significant figures
correctly communicates how accurate they are. As a rule of thumb,
the final result of a calculation is no more accurate than, and should
have no more significant figures than, the least accurate piece of
data.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Convert 134 mg to units of kg, writing your answer in scientific
notation. . Solution, p. 509

2 The speed of light is 3.0 × 108 m/s. Convert this to furlongs
per fortnight. A furlong is 220 yards, and a fortnight is 14 days. An
inch is 2.54 cm.

√

3 Express each of the following quantities in micrograms:
(a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100× 103 g, (e) 1000 ng.

√

4 In the last century, the average age of the onset of puberty for
girls has decreased by several years. Urban folklore has it that this
is because of hormones fed to beef cattle, but it is more likely to be
because modern girls have more body fat on the average and pos-
sibly because of estrogen-mimicking chemicals in the environment
from the breakdown of pesticides. A hamburger from a hormone-
implanted steer has about 0.2 ng of estrogen (about double the
amount of natural beef). A serving of peas contains about 300
ng of estrogen. An adult woman produces about 0.5 mg of estrogen
per day (note the different unit!). (a) How many hamburgers would
a girl have to eat in one day to consume as much estrogen as an
adult woman’s daily production? (b) How many servings of peas?√

5 Compute the following things. If they don’t make sense be-
cause of units, say so.
(a) 3 cm + 5 cm
(b) 1.11 m + 22 cm
(c) 120 miles + 2.0 hours
(d) 120 miles / 2.0 hours

6 Your backyard has brick walls on both ends. You measure a
distance of 23.4 m from the inside of one wall to the inside of the
other. Each wall is 29.4 cm thick. How far is it from the outside
of one wall to the outside of the other? Pay attention to significant
figures.

7 The usual definition of the mean (average) of two numbers a
and b is (a+b)/2. This is called the arithmetic mean. The geometric
mean, however, is defined as (ab)1/2 (i.e., the square root of ab). For
the sake of definiteness, let’s say both numbers have units of mass.
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Problem 10.

Problem 11.

(a) Compute the arithmetic mean of two numbers that have units
of grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If a and b both have units of grams,
what should we call the units of ab? Does your answer make sense
when you take the square root? (d) Suppose someone proposes to
you a third kind of mean, called the superduper mean, defined as
(ab)1/3. Is this reasonable? . Solution, p. 509

8 The distance to the horizon is given by the expression
√

2rh,
where r is the radius of the Earth, and h is the observer’s height
above the Earth’s surface. (This can be proved using the Pythagorean
theorem.) Show that the units of this expression make sense. (See
example 1 on p. 23 for an example of how to do this.) Don’t try to
prove the result, just check its units.

9 In an article on the SARS epidemic, the May 7, 2003 New
York Times discusses conflicting estimates of the disease’s incuba-
tion period (the average time that elapses from infection to the first
symptoms). “The study estimated it to be 6.4 days. But other sta-
tistical calculations ... showed that the incubation period could be
as long as 14.22 days.” What’s wrong here?

10 (a) Based on the definitions of the sine, cosine, and tangent,
what units must they have? (b) A cute formula from trigonometry
lets you find any angle of a triangle if you know the lengths of
its sides. Using the notation shown in the figure, and letting s =
(a+ b+ c)/2 be half the perimeter, we have

tanA/2 =

√
(s− b)(s− c)
s(s− a)

.

Show that the units of this equation make sense. In other words,
check that the units of the right-hand side are the same as your
answer to part a of the question. . Solution, p. 509

11 The photo shows the corner of a bag of pretzels. What’s
wrong here?
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Exercise 0: Models and idealization
Equipment:

coffee filters

ramps (one per group)

balls of various sizes

sticky tape

vacuum pump and “guinea and feather” apparatus (one)

The motion of falling objects has been recognized since ancient times as an important piece of
physics, but the motion is inconveniently fast, so in our everyday experience it can be hard to
tell exactly what objects are doing when they fall. In this exercise you will use several techniques
to get around this problem and study the motion. Your goal is to construct a scientific model of
falling. A model means an explanation that makes testable predictions. Often models contain
simplifications or idealizations that make them easier to work with, even though they are not
strictly realistic.

1. One method of making falling easier to observe is to use objects like feathers that we know
from everyday experience will not fall as fast. You will use coffee filters, in stacks of various
sizes, to test the following two hypotheses and see which one is true, or whether neither is true:

Hypothesis 1A: When an object is dropped, it rapidly speeds up to a certain natural falling
speed, and then continues to fall at that speed. The falling speed is proportional to the object’s
weight. (A proportionality is not just a statement that if one thing gets bigger, the other does
too. It says that if one becomes three times bigger, the other also gets three times bigger, etc.)

Hypothesis 1B: Different objects fall the same way, regardless of weight.

Test these hypotheses and discuss your results with your instructor.

2. A second way to slow down the action is to let a ball roll down a ramp. The steeper the
ramp, the closer to free fall. Based on your experience in part 1, write a hypothesis about what
will happen when you race a heavier ball against a lighter ball down the same ramp, starting
them both from rest.

Hypothesis:

Show your hypothesis to your instructor, and then test it.

You have probably found that falling was more complicated than you thought! Is there more
than one factor that affects the motion of a falling object? Can you imagine certain idealized
situations that are simpler? Try to agree verbally with your group on an informal model of
falling that can make predictions about the experiments described in parts 3 and 4.

3. You have three balls: a standard “comparison ball” of medium weight, a light ball, and a
heavy ball. Suppose you stand on a chair and (a) drop the light ball side by side with the
comparison ball, then (b) drop the heavy ball side by side with the comparison ball, then (c)
join the light and heavy balls together with sticky tape and drop them side by side with the
comparison ball.

Use your model to make a prediction:

Test your prediction.
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4. Your instructor will pump nearly all the air out of a chamber containing a feather and a
heavier object, then let them fall side by side in the chamber.

Use your model to make a prediction:
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a / Amoebas this size are
seldom encountered.

Life would be very different if you
were the size of an insect.

Chapter 1

Scaling and estimation

1.1 Introduction

Why can’t an insect be the size of a dog? Some skinny stretched-
out cells in your spinal cord are a meter tall — why does nature
display no single cells that are not just a meter tall, but a meter
wide, and a meter thick as well? Believe it or not, these are questions
that can be answered fairly easily without knowing much more about
physics than you already do. The only mathematical technique you
really need is the humble conversion, applied to area and volume.

Area and volume

Area can be defined by saying that we can copy the shape of
interest onto graph paper with 1 cm × 1 cm squares and count the
number of squares inside. Fractions of squares can be estimated by
eye. We then say the area equals the number of squares, in units of
square cm. Although this might seem less “pure” than computing
areas using formulae like A = πr2 for a circle or A = wh/2 for a
triangle, those formulae are not useful as definitions of area because
they cannot be applied to irregularly shaped areas.

Units of square cm are more commonly written as cm2 in science.
Of course, the unit of measurement symbolized by “cm” is not an
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algebra symbol standing for a number that can be literally multiplied
by itself. But it is advantageous to write the units of area that way
and treat the units as if they were algebra symbols. For instance,
if you have a rectangle with an area of 6m2 and a width of 2 m,
then calculating its length as (6 m2)/(2 m) = 3 m gives a result
that makes sense both numerically and in terms of units. This
algebra-style treatment of the units also ensures that our methods
of converting units work out correctly. For instance, if we accept
the fraction

100 cm

1 m

as a valid way of writing the number one, then one times one equals
one, so we should also say that one can be represented by

100 cm

1 m
× 100 cm

1 m
,

which is the same as
10000 cm2

1 m2
.

That means the conversion factor from square meters to square cen-
timeters is a factor of 104, i.e., a square meter has 104 square cen-
timeters in it.

All of the above can be easily applied to volume as well, using
one-cubic-centimeter blocks instead of squares on graph paper.

To many people, it seems hard to believe that a square meter
equals 10000 square centimeters, or that a cubic meter equals a
million cubic centimeters — they think it would make more sense if
there were 100 cm2 in 1 m2, and 100 cm3 in 1 m3, but that would be
incorrect. The examples shown in figure b aim to make the correct
answer more believable, using the traditional U.S. units of feet and
yards. (One foot is 12 inches, and one yard is three feet.)

b / Visualizing conversions of
area and volume using traditional
U.S. units.

self-check A
Based on figure b, convince yourself that there are 9 ft2 in a square yard,
and 27 ft3 in a cubic yard, then demonstrate the same thing symbolically
(i.e., with the method using fractions that equal one). . Answer, p.
523
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. Solved problem: converting mm2 to cm2 page 52, problem 2

. Solved problem: scaling a liter page 52, problem 1

Discussion question

A How many square centimeters are there in a square inch? (1 inch =
2.54 cm) First find an approximate answer by making a drawing, then de-
rive the conversion factor more accurately using the symbolic method.

c / Galileo Galilei (1564-1642) was a Renaissance Italian who brought the
scientific method to bear on physics, creating the modern version of the
science. Coming from a noble but very poor family, Galileo had to drop
out of medical school at the University of Pisa when he ran out of money.
Eventually becoming a lecturer in mathematics at the same school, he
began a career as a notorious troublemaker by writing a burlesque ridi-
culing the university’s regulations — he was forced to resign, but found a
new teaching position at Padua. He invented the pendulum clock, inves-
tigated the motion of falling bodies, and discovered the moons of Jupiter.
The thrust of his life’s work was to discredit Aristotle’s physics by con-
fronting it with contradictory experiments, a program that paved the way
for Newton’s discovery of the relationship between force and motion. In
chapter 3 we’ll come to the story of Galileo’s ultimate fate at the hands of
the Church.

1.2 Scaling of area and volume
Great fleas have lesser fleas
Upon their backs to bite ’em.
And lesser fleas have lesser still,
And so ad infinitum.

Jonathan Swift

Now how do these conversions of area and volume relate to the
questions I posed about sizes of living things? Well, imagine that
you are shrunk like Alice in Wonderland to the size of an insect.
One way of thinking about the change of scale is that what used
to look like a centimeter now looks like perhaps a meter to you,
because you’re so much smaller. If area and volume scaled according
to most people’s intuitive, incorrect expectations, with 1 m2 being
the same as 100 cm2, then there would be no particular reason
why nature should behave any differently on your new, reduced
scale. But nature does behave differently now that you’re small.
For instance, you will find that you can walk on water, and jump
to many times your own height. The physicist Galileo Galilei had
the basic insight that the scaling of area and volume determines
how natural phenomena behave differently on different scales. He
first reasoned about mechanical structures, but later extended his
insights to living things, taking the then-radical point of view that at
the fundamental level, a living organism should follow the same laws
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d / The small boat holds up
just fine.

e / A larger boat built with
the same proportions as the
small one will collapse under its
own weight.

f / A boat this large needs to
have timbers that are thicker
compared to its size.

of nature as a machine. We will follow his lead by first discussing
machines and then living things.

Galileo on the behavior of nature on large and small scales

One of the world’s most famous pieces of scientific writing is
Galileo’s Dialogues Concerning the Two New Sciences. Galileo was
an entertaining writer who wanted to explain things clearly to laypeo-
ple, and he livened up his work by casting it in the form of a dialogue
among three people. Salviati is really Galileo’s alter ego. Simplicio
is the stupid character, and one of the reasons Galileo got in trouble
with the Church was that there were rumors that Simplicio repre-
sented the Pope. Sagredo is the earnest and intelligent student, with
whom the reader is supposed to identify. (The following excerpts
are from the 1914 translation by Crew and de Salvio.)

SAGREDO: Yes, that is what I mean; and I refer especially to
his last assertion which I have always regarded as false. . . ;
namely, that in speaking of these and other similar machines
one cannot argue from the small to the large, because many
devices which succeed on a small scale do not work on a
large scale. Now, since mechanics has its foundations in ge-
ometry, where mere size [ is unimportant], I do not see that
the properties of circles, triangles, cylinders, cones and other
solid figures will change with their size. If, therefore, a large
machine be constructed in such a way that its parts bear to
one another the same ratio as in a smaller one, and if the
smaller is sufficiently strong for the purpose for which it is
designed, I do not see why the larger should not be able to
withstand any severe and destructive tests to which it may be
subjected.

Salviati contradicts Sagredo:

SALVIATI: . . . Please observe, gentlemen, how facts which
at first seem improbable will, even on scant explanation, drop
the cloak which has hidden them and stand forth in naked and
simple beauty. Who does not know that a horse falling from a
height of three or four cubits will break his bones, while a dog
falling from the same height or a cat from a height of eight
or ten cubits will suffer no injury? Equally harmless would be
the fall of a grasshopper from a tower or the fall of an ant from
the distance of the moon.

The point Galileo is making here is that small things are sturdier
in proportion to their size. There are a lot of objections that could be
raised, however. After all, what does it really mean for something to
be “strong”, to be “strong in proportion to its size,” or to be strong
“out of proportion to its size?” Galileo hasn’t given operational
definitions of things like “strength,” i.e., definitions that spell out
how to measure them numerically.
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g / Galileo discusses planks
made of wood, but the concept
may be easier to imagine with
clay. All three clay rods in the
figure were originally the same
shape. The medium-sized one
was twice the height, twice the
length, and twice the width of
the small one, and similarly the
large one was twice as big as
the medium one in all its linear
dimensions. The big one has
four times the linear dimensions
of the small one, 16 times the
cross-sectional area when cut
perpendicular to the page, and
64 times the volume. That means
that the big one has 64 times the
weight to support, but only 16
times the strength compared to
the smallest one.

Also, a cat is shaped differently from a horse — an enlarged
photograph of a cat would not be mistaken for a horse, even if the
photo-doctoring experts at the National Inquirer made it look like a
person was riding on its back. A grasshopper is not even a mammal,
and it has an exoskeleton instead of an internal skeleton. The whole
argument would be a lot more convincing if we could do some iso-
lation of variables, a scientific term that means to change only one
thing at a time, isolating it from the other variables that might have
an effect. If size is the variable whose effect we’re interested in see-
ing, then we don’t really want to compare things that are different
in size but also different in other ways.

SALVIATI: . . . we asked the reason why [shipbuilders] em-
ployed stocks, scaffolding, and bracing of larger dimensions
for launching a big vessel than they do for a small one; and
[an old man] answered that they did this in order to avoid the
danger of the ship parting under its own heavy weight, a dan-
ger to which small boats are not subject?

After this entertaining but not scientifically rigorous beginning,
Galileo starts to do something worthwhile by modern standards.
He simplifies everything by considering the strength of a wooden
plank. The variables involved can then be narrowed down to the
type of wood, the width, the thickness, and the length. He also
gives an operational definition of what it means for the plank to
have a certain strength “in proportion to its size,” by introducing
the concept of a plank that is the longest one that would not snap
under its own weight if supported at one end. If you increased
its length by the slightest amount, without increasing its width or
thickness, it would break. He says that if one plank is the same
shape as another but a different size, appearing like a reduced or
enlarged photograph of the other, then the planks would be strong
“in proportion to their sizes” if both were just barely able to support
their own weight.

h / 1. This plank is as long as it
can be without collapsing under
its own weight. If it was a hun-
dredth of an inch longer, it would
collapse. 2. This plank is made
out of the same kind of wood. It is
twice as thick, twice as long, and
twice as wide. It will collapse un-
der its own weight.
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Also, Galileo is doing something that would be frowned on in
modern science: he is mixing experiments whose results he has ac-
tually observed (building boats of different sizes), with experiments
that he could not possibly have done (dropping an ant from the
height of the moon). He now relates how he has done actual ex-
periments with such planks, and found that, according to this op-
erational definition, they are not strong in proportion to their sizes.
The larger one breaks. He makes sure to tell the reader how impor-
tant the result is, via Sagredo’s astonished response:

SAGREDO: My brain already reels. My mind, like a cloud
momentarily illuminated by a lightning flash, is for an instant
filled with an unusual light, which now beckons to me and
which now suddenly mingles and obscures strange, crude
ideas. From what you have said it appears to me impossible
to build two similar structures of the same material, but of
different sizes and have them proportionately strong.

In other words, this specific experiment, using things like wooden
planks that have no intrinsic scientific interest, has very wide impli-
cations because it points out a general principle, that nature acts
differently on different scales.

To finish the discussion, Galileo gives an explanation. He says
that the strength of a plank (defined as, say, the weight of the heav-
iest boulder you could put on the end without breaking it) is pro-
portional to its cross-sectional area, that is, the surface area of the
fresh wood that would be exposed if you sawed through it in the
middle. Its weight, however, is proportional to its volume.1

How do the volume and cross-sectional area of the longer plank
compare with those of the shorter plank? We have already seen,
while discussing conversions of the units of area and volume, that
these quantities don’t act the way most people naively expect. You
might think that the volume and area of the longer plank would both
be doubled compared to the shorter plank, so they would increase
in proportion to each other, and the longer plank would be equally
able to support its weight. You would be wrong, but Galileo knows
that this is a common misconception, so he has Salviati address the
point specifically:

SALVIATI: . . . Take, for example, a cube two inches on a
side so that each face has an area of four square inches
and the total area, i.e., the sum of the six faces, amounts
to twenty-four square inches; now imagine this cube to be
sawed through three times [with cuts in three perpendicular
planes] so as to divide it into eight smaller cubes, each one
inch on the side, each face one inch square, and the total

1Galileo makes a slightly more complicated argument, taking into account
the effect of leverage (torque). The result I’m referring to comes out the same
regardless of this effect.
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i / The area of a shape is
proportional to the square of its
linear dimensions, even if the
shape is irregular.

surface of each cube six square inches instead of twenty-
four in the case of the larger cube. It is evident therefore,
that the surface of the little cube is only one-fourth that of
the larger, namely, the ratio of six to twenty-four; but the vol-
ume of the solid cube itself is only one-eighth; the volume,
and hence also the weight, diminishes therefore much more
rapidly than the surface. . . You see, therefore, Simplicio, that
I was not mistaken when . . . I said that the surface of a small
solid is comparatively greater than that of a large one.

The same reasoning applies to the planks. Even though they
are not cubes, the large one could be sawed into eight small ones,
each with half the length, half the thickness, and half the width.
The small plank, therefore, has more surface area in proportion to
its weight, and is therefore able to support its own weight while the
large one breaks.

Scaling of area and volume for irregularly shaped objects

You probably are not going to believe Galileo’s claim that this
has deep implications for all of nature unless you can be convinced
that the same is true for any shape. Every drawing you’ve seen so
far has been of squares, rectangles, and rectangular solids. Clearly
the reasoning about sawing things up into smaller pieces would not
prove anything about, say, an egg, which cannot be cut up into eight
smaller egg-shaped objects with half the length.

Is it always true that something half the size has one quarter
the surface area and one eighth the volume, even if it has an irreg-
ular shape? Take the example of a child’s violin. Violins are made
for small children in smaller size to accomodate their small bodies.
Figure i shows a full-size violin, along with two violins made with
half and 3/4 of the normal length.2 Let’s study the surface area of
the front panels of the three violins.

Consider the square in the interior of the panel of the full-size
violin. In the 3/4-size violin, its height and width are both smaller
by a factor of 3/4, so the area of the corresponding, smaller square
becomes 3/4×3/4 = 9/16 of the original area, not 3/4 of the original
area. Similarly, the corresponding square on the smallest violin has
half the height and half the width of the original one, so its area is
1/4 the original area, not half.

The same reasoning works for parts of the panel near the edge,
such as the part that only partially fills in the other square. The
entire square scales down the same as a square in the interior, and
in each violin the same fraction (about 70%) of the square is full, so
the contribution of this part to the total area scales down just the
same.

2The customary terms “half-size” and “3/4-size” actually don’t describe the
sizes in any accurate way. They’re really just standard, arbitrary marketing
labels.
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j / The muffin comes out of
the oven too hot to eat. Breaking
it up into four pieces increases
its surface area while keeping
the total volume the same. It
cools faster because of the
greater surface-to-volume ratio.
In general, smaller things have
greater surface-to-volume ratios,
but in this example there is no
easy way to compute the effect
exactly, because the small pieces
aren’t the same shape as the
original muffin.

Since any small square region or any small region covering part
of a square scales down like a square object, the entire surface area
of an irregularly shaped object changes in the same manner as the
surface area of a square: scaling it down by 3/4 reduces the area by
a factor of 9/16, and so on.

In general, we can see that any time there are two objects with
the same shape, but different linear dimensions (i.e., one looks like a
reduced photo of the other), the ratio of their areas equals the ratio
of the squares of their linear dimensions:

A1

A2
=

(
L1

L2

)2

.

Note that it doesn’t matter where we choose to measure the linear
size, L, of an object. In the case of the violins, for instance, it could
have been measured vertically, horizontally, diagonally, or even from
the bottom of the left f-hole to the middle of the right f-hole. We
just have to measure it in a consistent way on each violin. Since all
the parts are assumed to shrink or expand in the same manner, the
ratio L1/L2 is independent of the choice of measurement.

It is also important to realize that it is completely unnecessary
to have a formula for the area of a violin. It is only possible to
derive simple formulas for the areas of certain shapes like circles,
rectangles, triangles and so on, but that is no impediment to the
type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in terms
of ratios, especially when more than two objects are being compared.
A more compact way of rewriting the previous equation is

A ∝ L2 .

The symbol “∝” means “is proportional to.” Scientists and engi-
neers often speak about such relationships verbally using the phrases
“scales like” or “goes like,” for instance “area goes like length squared.”

All of the above reasoning works just as well in the case of vol-
ume. Volume goes like length cubed:

V ∝ L3 .

self-check B
When a car or truck travels over a road, there is wear and tear on the
road surface, which incurs a cost. Studies show that the cost C per kilo-
meter of travel is related to the weight per axle w by C ∝ w4. Translate
this into a statement about ratios. . Answer, p. 523

If different objects are made of the same material with the same
density, ρ = m/V , then their masses, m = ρV , are proportional to
L3. (The symbol for density is ρ, the lower-case Greek letter “rho.”)
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k / Example 1. The big trian-
gle has four times more area than
the little one.

l / A tricky way of solving ex-
ample 1, explained in solution #2.

An important point is that all of the above reasoning about
scaling only applies to objects that are the same shape. For instance,
a piece of paper is larger than a pencil, but has a much greater
surface-to-volume ratio.

Scaling of the area of a triangle example 1
. In figure k, the larger triangle has sides twice as long. How
many times greater is its area?

Correct solution #1: Area scales in proportion to the square of the
linear dimensions, so the larger triangle has four times more area
(22 = 4).

Correct solution #2: You could cut the larger triangle into four of
the smaller size, as shown in fig. (b), so its area is four times
greater. (This solution is correct, but it would not work for a shape
like a circle, which can’t be cut up into smaller circles.)

Correct solution #3: The area of a triangle is given by

A = bh/2, where b is the base and h is the height. The areas of
the triangles are

A1 = b1h1/2
A2 = b2h2/2

= (2b1)(2h1)/2
= 2b1h1

A2/A1 = (2b1h1)/(b1h1/2)
= 4

(Although this solution is correct, it is a lot more work than solution
#1, and it can only be used in this case because a triangle is a
simple geometric shape, and we happen to know a formula for its
area.)

Correct solution #4: The area of a triangle is A = bh/2. The
comparison of the areas will come out the same as long as the
ratios of the linear sizes of the triangles is as specified, so let’s
just say b1 = 1.00 m and b2 = 2.00 m. The heights are then also
h1 = 1.00 m and h2 = 2.00 m, giving areas A1 = 0.50 m2 and
A2 = 2.00 m2, so A2/A1 = 4.00.

(The solution is correct, but it wouldn’t work with a shape for
whose area we don’t have a formula. Also, the numerical cal-
culation might make the answer of 4.00 appear inexact, whereas
solution #1 makes it clear that it is exactly 4.)

Incorrect solution: The area of a triangle is A = bh/2, and if you
plug in b = 2.00 m and h = 2.00 m, you get A = 2.00 m2, so
the bigger triangle has 2.00 times more area. (This solution is
incorrect because no comparison has been made with the smaller
triangle.)
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m / Example 2. The big sphere
has 125 times more volume than
the little one.

n / Example 3. The 48-point
“S” has 1.78 times more area
than the 36-point “S.”

Scaling of the volume of a sphere example 2
. In figure m, the larger sphere has a radius that is five times
greater. How many times greater is its volume?

Correct solution #1: Volume scales like the third power of the
linear size, so the larger sphere has a volume that is 125 times
greater (53 = 125).

Correct solution #2: The volume of a sphere is V = (4/3)πr3, so

V1 =
4
3
πr3

1

V2 =
4
3
πr3

2

=
4
3
π(5r1)3

=
500

3
πr3

1

V2/V1 =
(

500
3
πr3

1

)
/

(
4
3
πr3

1

)
= 125

Incorrect solution: The volume of a sphere is V = (4/3)πr3, so

V1 =
4
3
πr3

1

V2 =
4
3
πr3

2

=
4
3
π · 5r3

1

=
20
3
πr3

1

V2/V1 =
(

20
3
πr3

1

)
/

(
4
3
πr3

1

)
= 5

(The solution is incorrect because (5r1)3 is not the same as 5r3
1 .)

Scaling of a more complex shape example 3
. The first letter “S” in figure n is in a 36-point font, the second in
48-point. How many times more ink is required to make the larger
“S”? (Points are a unit of length used in typography.)

Correct solution: The amount of ink depends on the area to be
covered with ink, and area is proportional to the square of the
linear dimensions, so the amount of ink required for the second
“S” is greater by a factor of (48/36)2 = 1.78.

Incorrect solution: The length of the curve of the second “S” is
longer by a factor of 48/36 = 1.33, so 1.33 times more ink is
required.

(The solution is wrong because it assumes incorrectly that the
width of the curve is the same in both cases. Actually both the
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width and the length of the curve are greater by a factor of 48/36,
so the area is greater by a factor of (48/36)2 = 1.78.)

Reasoning about ratios and proportionalities is one of the three
essential mathematical skills, summarized on pp.504-505, that you
need for success in this course.

. Solved problem: a telescope gathers light page 52, problem 3

. Solved problem: distance from an earthquake page 52, problem 8

Discussion questions

A A toy fire engine is 1/30 the size of the real one, but is constructed
from the same metal with the same proportions. How many times smaller
is its weight? How many times less red paint would be needed to paint
it?

B Galileo spends a lot of time in his dialog discussing what really
happens when things break. He discusses everything in terms of Aristo-
tle’s now-discredited explanation that things are hard to break, because
if something breaks, there has to be a gap between the two halves with
nothing in between, at least initially. Nature, according to Aristotle, “ab-
hors a vacuum,” i.e., nature doesn’t “like” empty space to exist. Of course,
air will rush into the gap immediately, but at the very moment of breaking,
Aristotle imagined a vacuum in the gap. Is Aristotle’s explanation of why
it is hard to break things an experimentally testable statement? If so, how
could it be tested experimentally?

1.3 Order-of-magnitude estimates
It is the mark of an instructed mind to rest satisfied with the
degree of precision that the nature of the subject permits and
not to seek an exactness where only an approximation of the
truth is possible.

Aristotle

It is a common misconception that science must be exact. For
instance, in the Star Trek TV series, it would often happen that
Captain Kirk would ask Mr. Spock, “Spock, we’re in a pretty bad
situation. What do you think are our chances of getting out of
here?” The scientific Mr. Spock would answer with something like,
“Captain, I estimate the odds as 237.345 to one.” In reality, he
could not have estimated the odds with six significant figures of
accuracy, but nevertheless one of the hallmarks of a person with a
good education in science is the ability to make estimates that are
likely to be at least somewhere in the right ballpark. In many such
situations, it is often only necessary to get an answer that is off by no
more than a factor of ten in either direction. Since things that differ
by a factor of ten are said to differ by one order of magnitude, such
an estimate is called an order-of-magnitude estimate. The tilde,
∼, is used to indicate that things are only of the same order of
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o / Can you guess how many
jelly beans are in the jar? If you
try to guess directly, you will
almost certainly underestimate.
The right way to do it is to esti-
mate the linear dimensions, then
get the volume indirectly. See
problem 24, p. 55.

p / Consider a spherical cow.

magnitude, but not exactly equal, as in

odds of survival ∼ 100 to one .

The tilde can also be used in front of an individual number to em-
phasize that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems simple and
natural to experienced scientists, it’s a mode of reasoning that is
completely unfamiliar to most college students. Some of the typical
mental steps can be illustrated in the following example.

Cost of transporting tomatoes (incorrect solution) example 4
. Roughly what percentage of the price of a tomato comes from
the cost of transporting it in a truck?

. The following incorrect solution illustrates one of the main ways
you can go wrong in order-of-magnitude estimates.

Incorrect solution: Let’s say the trucker needs to make a $400
profit on the trip. Taking into account her benefits, the cost of gas,
and maintenance and payments on the truck, let’s say the total
cost is more like $2000. I’d guess about 5000 tomatoes would fit
in the back of the truck, so the extra cost per tomato is 40 cents.
That means the cost of transporting one tomato is comparable to
the cost of the tomato itself. Transportation really adds a lot to the
cost of produce, I guess.

The problem is that the human brain is not very good at esti-
mating area or volume, so it turns out the estimate of 5000 tomatoes
fitting in the truck is way off. That’s why people have a hard time
at those contests where you are supposed to estimate the number of
jellybeans in a big jar. Another example is that most people think
their families use about 10 gallons of water per day, but in reality
the average is about 300 gallons per day. When estimating area
or volume, you are much better off estimating linear dimensions,
and computing volume from the linear dimensions. Here’s a better
solution to the problem about the tomato truck:

Cost of transporting tomatoes (correct solution) example 5
As in the previous solution, say the cost of the trip is $2000. The
dimensions of the bin are probably 4 m × 2 m × 1 m, for a vol-
ume of 8 m3. Since the whole thing is just an order-of-magnitude
estimate, let’s round that off to the nearest power of ten, 10 m3.
The shape of a tomato is complicated, and I don’t know any for-
mula for the volume of a tomato shape, but since this is just an
estimate, let’s pretend that a tomato is a cube, 0.05 m × 0.05 m ×
0.05 m, for a volume of 1.25× 10−4 m3. Since this is just a rough
estimate, let’s round that to 10−4m3. We can find the total num-
ber of tomatoes by dividing the volume of the bin by the volume
of one tomato: 10 m3/10−4 m3 = 105 tomatoes. The transporta-
tion cost per tomato is $2000/105 tomatoes=$0.02/tomato. That
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means that transportation really doesn’t contribute very much to
the cost of a tomato.

Approximating the shape of a tomato as a cube is an example of
another general strategy for making order-of-magnitude estimates.
A similar situation would occur if you were trying to estimate how
many m2 of leather could be produced from a herd of ten thousand
cattle. There is no point in trying to take into account the shape of
the cows’ bodies. A reasonable plan of attack might be to consider
a spherical cow. Probably a cow has roughly the same surface area
as a sphere with a radius of about 1 m, which would be 4π(1 m)2.
Using the well-known facts that pi equals three, and four times three
equals about ten, we can guess that a cow has a surface area of about
10 m2, so the herd as a whole might yield 105 m2 of leather.

Estimating mass indirectly example 6
Usually the best way to estimate mass is to estimate linear di-
mensions, then use those to infer volume, and then get the mass
based on the volume. For example, Amphicoelias, shown in the
figure, may have been the largest land animal ever to live. Fossils
tell us the linear dimensions of an animal, but we can only indi-
rectly guess its mass. Given the length scale in the figure, let’s
estimate the mass of an Amphicoelias.

Its torso looks like it can be approximated by a rectangular box
with dimensions 10 m×5 m×3 m, giving about 2×102 m3. Living
things are mostly made of water, so we assume the animal to
have the density of water, 1 g/cm3, which converts to 103 kg/m3.
This gives a mass of about 2× 105 kg, or 200 metric tons.

The following list summarizes the strategies for getting a good
order-of-magnitude estimate.

1. Don’t even attempt more than one significant figure of preci-
sion.

2. Don’t guess area, volume, or mass directly. Guess linear di-
mensions and get area, volume, or mass from them.

3. When dealing with areas or volumes of objects with complex
shapes, idealize them as if they were some simpler shape, a
cube or a sphere, for example.
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4. Check your final answer to see if it is reasonable. If you esti-
mate that a herd of ten thousand cattle would yield 0.01 m2

of leather, then you have probably made a mistake with con-
version factors somewhere.
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Summary
Notation
∝ . . . . . . . . . is proportional to
∼ . . . . . . . . . on the order of, is on the order of

Summary

Nature behaves differently on large and small scales. Galileo
showed that this results fundamentally from the way area and vol-
ume scale. Area scales as the second power of length, A ∝ L2, while
volume scales as length to the third power, V ∝ L3.

An order of magnitude estimate is one in which we do not at-
tempt or expect an exact answer. The main reason why the unini-
tiated have trouble with order-of-magnitude estimates is that the
human brain does not intuitively make accurate estimates of area
and volume. Estimates of area and volume should be approached
by first estimating linear dimensions, which one’s brain has a feel
for.
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Problem 1.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The one-liter cube in the photo has been marked off into
smaller cubes, with linear dimensions one tenth those of the big
one. What is the volume of each of the small cubes?

. Solution, p. 510

2 How many cm2 is 1 mm2? . Solution, p. 510

3 Compare the light-gathering powers of a 3-cm-diameter tele-
scope and a 30-cm telescope. . Solution, p. 510

4 The traditional Martini glass is shaped like a cone with the
point at the bottom. Suppose you make a Martini by pouring ver-
mouth into the glass to a depth of 3 cm, and then adding gin to bring
the depth to 6 cm. What are the proportions of gin and vermouth?

. Solution, p. 510

5 How many cubic inches are there in a cubic foot? The answer
is not 12.

√

6 Assume a dog’s brain is twice as great in diameter as a cat’s,
but each animal’s brain cells are the same size and their brains are
the same shape. In addition to being a far better companion and
much nicer to come home to, how many times more brain cells does
a dog have than a cat? The answer is not 2.

7 The population density of Los Angeles is about 4000 people/km2.
That of San Francisco is about 6000 people/km2. How many times
farther away is the average person’s nearest neighbor in LA than in
San Francisco? The answer is not 1.5.

√

8 One step on the Richter scale corresponds to a factor of 100
in terms of the energy absorbed by something on the surface of the
Earth, e.g., a house. For instance, a 9.3-magnitude quake would
release 100 times more energy than an 8.3. The energy spreads out
from the epicenter as a wave, and for the sake of this problem we’ll
assume we’re dealing with seismic waves that spread out in three
dimensions, so that we can visualize them as hemispheres spreading
out under the surface of the earth. If a certain 7.6-magnitude earth-
quake and a certain 5.6-magnitude earthquake produce the same
amount of vibration where I live, compare the distances from my
house to the two epicenters. . Solution, p. 510
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Problem 12.

9 The central portion of a CD is taken up by the hole and some
surrounding clear plastic, and this area is unavailable for storing
data. The radius of the central circle is about 35% of the outer
radius of the data-storing area. What percentage of the CD’s area
is therefore lost?

√

10 A taxon (plural taxa) is a group of living things. For ex-
ample, Homo sapiens and Homo neanderthalensis are both taxa —
specifically, they are two different species within the genus Homo.
Surveys by botanists show that the number of plant taxa native
to a given contiguous land area A is usually approximately propor-
tional to A1/3. (a) There are 70 different species of lupine native
to Southern California, which has an area of about 200, 000 km2.
The San Gabriel Mountains cover about 1, 600 km2. Suppose that
you wanted to learn to identify all the species of lupine in the San
Gabriels. Approximately how many species would you have to fa-
miliarize yourself with? . Answer, p. 527

√

(b) What is the interpretation of the fact that the exponent, 1/3, is
less than one?

11 X-ray images aren’t only used with human subjects but also,
for example, on insects and flowers. In 2003, a team of researchers
at Argonne National Laboratory used x-ray imagery to find for the
first time that insects, although they do not have lungs, do not
necessarily breathe completely passively, as had been believed pre-
viously; many insects rapidly compress and expand their trachea,
head, and thorax in order to force air in and out of their bodies.
One difference between x-raying a human and an insect is that if a
medical x-ray machine was used on an insect, virtually 100% of the
x-rays would pass through its body, and there would be no contrast
in the image produced. Less penetrating x-rays of lower energies
have to be used. For comparison, a typical human body mass is
about 70 kg, whereas a typical ant is about 10 mg. Estimate the
ratio of the thicknesses of tissue that must be penetrated by x-rays
in one case compared to the other.

√

12 Radio was first commercialized around 1920, and ever since
then, radio signals from our planet have been spreading out across
our galaxy. It is possible that alien civilizations could detect these
signals and learn that there is life on earth. In the 90 years that the
signals have been spreading at the speed of light, they have created
a sphere with a radius of 90 light-years. To show an idea of the
size of this sphere, I’ve indicated it in the figure as a tiny white
circle on an image of a spiral galaxy seen edge on. (We don’t have
similar photos of our own Milky Way galaxy, because we can’t see
it from the outside.) So far we haven’t received answering signals
from aliens within this sphere, but as time goes on, the sphere will
expand as suggested by the dashed outline, reaching more and more
stars that might harbor extraterrestrial life. Approximately what
year will it be when the sphere has expanded to fill a volume 100
times greater than the volume it fills today in 2010?

√
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Problem 19.

13 The Earth’s surface is about 70% water. Mars’s diameter is
about half the Earth’s, but it has no surface water. Compare the
land areas of the two planets.

√

14 In Europe, a piece of paper of the standard size, called A4,
is a little narrower and taller than its American counterpart. The
ratio of the height to the width is the square root of 2, and this has
some useful properties. For instance, if you cut an A4 sheet from left
to right, you get two smaller sheets that have the same proportions.
You can even buy sheets of this smaller size, and they’re called A5.
There is a whole series of sizes related in this way, all with the same
proportions. (a) Compare an A5 sheet to an A4 in terms of area and
linear size. (b) The series of paper sizes starts from an A0 sheet,
which has an area of one square meter. Suppose we had a series
of boxes defined in a similar way: the B0 box has a volume of one
cubic meter, two B1 boxes fit exactly inside an B0 box, and so on.
What would be the dimensions of a B0 box?

√

15 Estimate the volume of a human body, in cm3.

16 Estimate the number of blades of grass on a football field.

17 In a computer memory chip, each bit of information (a 0 or
a 1) is stored in a single tiny circuit etched onto the surface of a
silicon chip. The circuits cover the surface of the chip like lots in a
housing development. A typical chip stores 64 Mb (megabytes) of
data, where a byte is 8 bits. Estimate (a) the area of each circuit,
and (b) its linear size.

18 Suppose someone built a gigantic apartment building, mea-
suring 10 km × 10 km at the base. Estimate how tall the building
would have to be to have space in it for the entire world’s population
to live.

19 (a) Using the microscope photo in the figure, estimate the
mass of a one cell of the E. coli bacterium, which is one of the
most common ones in the human intestine. Note the scale at the
lower right corner, which is 1 µm. Each of the tubular objects in
the column is one cell. (b) The feces in the human intestine are
mostly bacteria (some dead, some alive), of which E. coli is a large
and typical component. Estimate the number of bacteria in your
intestines, and compare with the number of human cells in your
body, which is believed to be roughly on the order of 1013. (c)
Interpreting your result from part b, what does this tell you about
the size of a typical human cell compared to the size of a typical
bacterial cell?
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Albert Einstein, and his mous-
tache, problem 21.

20 A hamburger chain advertises that it has sold 10 billion
Bongo Burgers. Estimate the total mass of feed required to raise
the cows used to make the burgers.

21 Estimate the mass of one of the hairs in Albert Einstein’s
moustache, in units of kg.

22 Estimate the number of man-hours required for building the
Great Wall of China. . Solution, p. 510

23 According to folklore, every time you take a breath, you are
inhaling some of the atoms exhaled in Caesar’s last words. Is this
true? If so, how many?

24 Estimate the number of jellybeans in figure o on p. 48.
. Solution, p. 510
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Exercise 1: Scaling applied to leaves
Equipment:

leaves of three sizes, having roughly similar proportions of length, width, and thickness

balance

Each group will have one leaf, and should measure its surface area and volume, and determine
its surface-to-volume ratio. For consistency, every group should use units of cm2 and cm3, and
should only find the area of one side of the leaf. The area can be found by tracing the area of
the leaf on graph paper and counting squares. The volume can be found by weighing the leaf
and assuming that its density is 1 g/cm3 (the density of water). What implications do your
results have for the plants’ abilities to survive in different environments?
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Motion in one dimension
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a / Rotation.

b / Simultaneous rotation and
motion through space.

c / One person might say that the
tipping chair was only rotating in
a circle about its point of contact
with the floor, but another could
describe it as having both rotation
and motion through space.

Chapter 2

Velocity and relative
motion

2.1 Types of motion
If you had to think consciously in order to move your body, you
would be severely disabled. Even walking, which we consider to
be no great feat, requires an intricate series of motions that your
cerebrum would be utterly incapable of coordinating. The task of
putting one foot in front of the other is controlled by the more prim-
itive parts of your brain, the ones that have not changed much since
the mammals and reptiles went their separate evolutionary ways.
The thinking part of your brain limits itself to general directives
such as “walk faster,” or “don’t step on her toes,” rather than mi-
cromanaging every contraction and relaxation of the hundred or so
muscles of your hips, legs, and feet.

Physics is all about the conscious understanding of motion, but
we’re obviously not immediately prepared to understand the most
complicated types of motion. Instead, we’ll use the divide-and-
conquer technique. We’ll first classify the various types of motion,
and then begin our campaign with an attack on the simplest cases.
To make it clear what we are and are not ready to consider, we need
to examine and define carefully what types of motion can exist.

Rigid-body motion distinguished from motion that changes
an object’s shape

Nobody, with the possible exception of Fred Astaire, can simply
glide forward without bending their joints. Walking is thus an ex-
ample in which there is both a general motion of the whole object
and a change in the shape of the object. Another example is the
motion of a jiggling water balloon as it flies through the air. We are
not presently attempting a mathematical description of the way in
which the shape of an object changes. Motion without a change in
shape is called rigid-body motion. (The word “body” is often used
in physics as a synonym for “object.”)

Center-of-mass motion as opposed to rotation

A ballerina leaps into the air and spins around once before land-
ing. We feel intuitively that her rigid-body motion while her feet
are off the ground consists of two kinds of motion going on simul-
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e / No matter what point you
hang the pear from, the string
lines up with the pear’s center
of mass. The center of mass
can therefore be defined as the
intersection of all the lines made
by hanging the pear in this way.
Note that the X in the figure
should not be interpreted as
implying that the center of mass
is on the surface — it is actually
inside the pear.

f / The circus performers hang
with the ropes passing through
their centers of mass.

taneously: a rotation and a motion of her body as a whole through
space, along an arc. It is not immediately obvious, however, what
is the most useful way to define the distinction between rotation
and motion through space. Imagine that you attempt to balance a
chair and it falls over. One person might say that the only motion
was a rotation about the chair’s point of contact with the floor, but
another might say that there was both rotation and motion down
and to the side.

d / The leaping dancer’s motion is complicated, but the motion of
her center of mass is simple.

It turns out that there is one particularly natural and useful way
to make a clear definition, but it requires a brief digression. Every
object has a balance point, referred to in physics as the center of
mass. For a two-dimensional object such as a cardboard cutout, the
center of mass is the point at which you could hang the object from
a string and make it balance. In the case of the ballerina (who is
likely to be three-dimensional unless her diet is particularly severe),
it might be a point either inside or outside her body, depending
on how she holds her arms. Even if it is not practical to attach a
string to the balance point itself, the center of mass can be defined
as shown in figure e.

Why is the center of mass concept relevant to the question of
classifying rotational motion as opposed to motion through space?
As illustrated in figures d and g, it turns out that the motion of an
object’s center of mass is nearly always far simpler than the motion
of any other part of the object. The ballerina’s body is a large object
with a complex shape. We might expect that her motion would be
much more complicated than the motion of a small, simply-shaped
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h / An improperly balanced
wheel has a center of mass that
is not at its geometric center.
When you get a new tire, the
mechanic clamps little weights to
the rim to balance the wheel.

i / This toy was intentionally
designed so that the mushroom-
shaped piece of metal on top
would throw off the center of
mass. When you wind it up, the
mushroom spins, but the center
of mass doesn’t want to move,
so the rest of the toy tends to
counter the mushroom’s motion,
causing the whole thing to jump
around.

object, say a marble, thrown up at the same angle as the angle at
which she leapt. But it turns out that the motion of the ballerina’s
center of mass is exactly the same as the motion of the marble. That
is, the motion of the center of mass is the same as the motion the
ballerina would have if all her mass was concentrated at a point. By
restricting our attention to the motion of the center of mass, we can
therefore simplify things greatly.

g / The same leaping dancer, viewed from above. Her center of
mass traces a straight line, but a point away from her center of mass,
such as her elbow, traces the much more complicated path shown by the
dots.

We can now replace the ambiguous idea of “motion as a whole
through space” with the more useful and better defined concept
of “center-of-mass motion.” The motion of any rigid body can be
cleanly split into rotation and center-of-mass motion. By this defini-
tion, the tipping chair does have both rotational and center-of-mass
motion. Concentrating on the center of mass motion allows us to
make a simplified model of the motion, as if a complicated object
like a human body was just a marble or a point-like particle. Science
really never deals with reality; it deals with models of reality.

Note that the word “center” in “center of mass” is not meant
to imply that the center of mass must lie at the geometrical center
of an object. A car wheel that has not been balanced properly has
a center of mass that does not coincide with its geometrical center.
An object such as the human body does not even have an obvious
geometrical center.

It can be helpful to think of the center of mass as the average
location of all the mass in the object. With this interpretation,
we can see for example that raising your arms above your head
raises your center of mass, since the higher position of the arms’
mass raises the average. We won’t be concerned right now with
calculating centers of mass mathematically; the relevant equations
are in chapter 4 of Conservation Laws.

Ballerinas and professional basketball players can create an illu-
sion of flying horizontally through the air because our brains intu-
itively expect them to have rigid-body motion, but the body does
not stay rigid while executing a grand jete or a slam dunk. The legs
are low at the beginning and end of the jump, but come up higher at
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j / A fixed point on the dancer’s body follows a trajectory that is flat-
ter than what we expect, creating an illusion of flight.

the middle. Regardless of what the limbs do, the center of mass will
follow the same arc, but the low position of the legs at the beginning
and end means that the torso is higher compared to the center of
mass, while in the middle of the jump it is lower compared to the
center of mass. Our eye follows the motion of the torso and tries
to interpret it as the center-of-mass motion of a rigid body. But
since the torso follows a path that is flatter than we expect, this
attempted interpretation fails, and we experience an illusion that
the person is flying horizontally.

k / Example 1.

The center of mass as an average example 1
. Explain how we know that the center of mass of each object is
at the location shown in figure k.

. The center of mass is a sort of average, so the height of the
centers of mass in 1 and 2 has to be midway between the two
squares, because that height is the average of the heights of the
two squares. Example 3 is a combination of examples 1 and
2, so we can find its center of mass by averaging the horizontal
positions of their centers of mass. In example 4, each square
has been skewed a little, but just as much mass has been moved
up as down, so the average vertical position of the mass hasn’t
changed. Example 5 is clearly not all that different from example
4, the main difference being a slight clockwise rotation, so just as
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l / The high-jumper’s body
passes over the bar, but his
center of mass passes under it.

m / Self-check B.

in example 4, the center of mass must be hanging in empty space,
where there isn’t actually any mass. Horizontally, the center of
mass must be between the heels and toes, or else it wouldn’t be
possible to stand without tipping over.

Another interesting example from the sports world is the high
jump, in which the jumper’s curved body passes over the bar, but
the center of mass passes under the bar! Here the jumper lowers his
legs and upper body at the peak of the jump in order to bring his
waist higher compared to the center of mass.

Later in this course, we’ll find that there are more fundamental
reasons (based on Newton’s laws of motion) why the center of mass
behaves in such a simple way compared to the other parts of an
object. We’re also postponing any discussion of numerical methods
for finding an object’s center of mass. Until later in the course, we
will only deal with the motion of objects’ centers of mass.

Center-of-mass motion in one dimension

In addition to restricting our study of motion to center-of-mass
motion, we will begin by considering only cases in which the center
of mass moves along a straight line. This will include cases such
as objects falling straight down, or a car that speeds up and slows
down but does not turn.

Note that even though we are not explicitly studying the more
complex aspects of motion, we can still analyze the center-of-mass
motion while ignoring other types of motion that might be occurring
simultaneously . For instance, if a cat is falling out of a tree and
is initially upside-down, it goes through a series of contortions that
bring its feet under it. This is definitely not an example of rigid-
body motion, but we can still analyze the motion of the cat’s center
of mass just as we would for a dropping rock.

self-check A
Consider a person running, a person pedaling on a bicycle, a person
coasting on a bicycle, and a person coasting on ice skates. In which
cases is the center-of-mass motion one-dimensional? Which cases are
examples of rigid-body motion? . Answer, p. 523

self-check B
The figure shows a gymnast holding onto the inside of a big wheel.
From inside the wheel, how could he make it roll one way or the other?
. Answer, p. 523

2.2 Describing distance and time
Center-of-mass motion in one dimension is particularly easy to deal
with because all the information about it can be encapsulated in two
variables: x, the position of the center of mass relative to the origin,
and t, which measures a point in time. For instance, if someone
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supplied you with a sufficiently detailed table of x and t values, you
would know pretty much all there was to know about the motion of
the object’s center of mass.

A point in time as opposed to duration

In ordinary speech, we use the word “time” in two different
senses, which are to be distinguished in physics. It can be used,
as in “a short time” or “our time here on earth,” to mean a length
or duration of time, or it can be used to indicate a clock reading, as
in “I didn’t know what time it was,” or “now’s the time.” In sym-
bols, t is ordinarily used to mean a point in time, while ∆t signifies
an interval or duration in time. The capital Greek letter delta, ∆,
means “the change in...,” i.e. a duration in time is the change or
difference between one clock reading and another. The notation ∆t
does not signify the product of two numbers, ∆ and t, but rather
one single number, ∆t. If a matinee begins at a point in time t = 1
o’clock and ends at t = 3 o’clock, the duration of the movie was the
change in t,

∆t = 3 hours− 1 hour = 2 hours .

To avoid the use of negative numbers for ∆t, we write the clock
reading “after” to the left of the minus sign, and the clock reading
“before” to the right of the minus sign. A more specific definition
of the delta notation is therefore that delta stands for “after minus
before.”

Even though our definition of the delta notation guarantees that
∆t is positive, there is no reason why t can’t be negative. If t
could not be negative, what would have happened one second before
t = 0? That doesn’t mean that time “goes backward” in the sense
that adults can shrink into infants and retreat into the womb. It
just means that we have to pick a reference point and call it t = 0,
and then times before that are represented by negative values of t.
An example is that a year like 2007 A.D. can be thought of as a
positive t value, while one like 370 B.C. is negative. Similarly, when
you hear a countdown for a rocket launch, the phrase “t minus ten
seconds” is a way of saying t = −10 s, where t = 0 is the time of
blastoff, and t > 0 refers to times after launch.

Although a point in time can be thought of as a clock reading, it
is usually a good idea to avoid doing computations with expressions
such as “2:35” that are combinations of hours and minutes. Times
can instead be expressed entirely in terms of a single unit, such as
hours. Fractions of an hour can be represented by decimals rather
than minutes, and similarly if a problem is being worked in terms
of minutes, decimals can be used instead of seconds.

self-check C
Of the following phrases, which refer to points in time, which refer to
time intervals, and which refer to time in the abstract rather than as a
measurable number?
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(1) “The time has come.”

(2) “Time waits for no man.”

(3) “The whole time, he had spit on his chin.” . Answer, p. 523

The Leibniz notation and infinitesimals

∆ is the Greek version of “D,” suggesting that there is a rela-
tionship between ∆t and the notation dt from calculus. The “d”
notation was invented by Leibniz around 1675 to suggest the word
“difference.” The idea was that a dt would be like a ∆t that was
extremely small — smaller than any real number, and yet greater
than zero. These infinitestimal numbers were the way the world’s
greatest mathematicians thought about calculus for the next two
hundred years. For example, dy/dx meant the number you got when
you divided dy by dx. The use of infinitesimal numbers was seen
as a natural part of the process of generalization that had already
seen the invention of fractions and irrational numbers by the ancient
Greeks, zero and negative numbers in India, and complex numbers
in Renaissance Italy. By the end of the 19th century, mathemati-
cians had begun making formal mathematical descriptions of num-
ber systems, and they had succeeded in making nice tidy schemes
out of all of these categories except for infinitesimals. Having run
into a brick wall, they decided to rebuild calculus using the notion
of a limit. Depending on when and where you got your education in
calculus, you may have been warned severely that dy and dx were
not numbers, and that dy/dx didn’t mean dividing one by another.

But in the 1960’s, the logician Abraham Robinson at Yale proved
that infinitesimals could be tamed and domesticated; they were no
more self-contradictory than negative numbers or fractions. There
is a handy rule for making sure that you don’t come to incorrect
conclusions by using infinitesimals. The rule is that you can apply
any axiom of the real number system to infinitesimals, and the result
will be correct, provided that the statement can be put in a form
like “for any number . . . ,” but not “for any set of numbers . . . ” We
carry over the axiom, reinterpreting “number” to mean any member
of the enriched number system that includes both the real numbers
and the infinitesimals.

Logic and infinitesimals example 2
There is an axiom of the real number system that for any number
t , t + 0 = t . This applies to infinitesimals as well, so that dt + 0 =
dt .

Position as opposed to change in position

As with time, a distinction should be made between a point
in space, symbolized as a coordinate x, and a change in position,
symbolized as ∆x.

As with t,x can be negative. If a train is moving down the
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tracks, not only do you have the freedom to choose any point along
the tracks and call it x = 0, but it’s also up to you to decide which
side of the x = 0 point is positive x and which side is negative x.

Since we’ve defined the delta notation to mean “after minus
before,” it is possible that ∆x will be negative, unlike ∆t which is
guaranteed to be positive. Suppose we are describing the motion
of a train on tracks linking Tucson and Chicago. As shown in the
figure, it is entirely up to you to decide which way is positive.

n / Two equally valid ways of de-
scribing the motion of a train from
Tucson to Chicago. In example 1,
the train has a positive ∆x as it
goes from Enid to Joplin. In 2,
the same train going forward in
the same direction has a negative
∆x .

Note that in addition to x and ∆x, there is a third quantity we
could define, which would be like an odometer reading, or actual
distance traveled. If you drive 10 miles, make a U-turn, and drive
back 10 miles, then your ∆x is zero, but your car’s odometer reading
has increased by 20 miles. However important the odometer reading
is to car owners and used car dealers, it is not very important in
physics, and there is not even a standard name or notation for it.
The change in position, ∆x, is more useful because it is so much
easier to calculate: to compute ∆x, we only need to know the be-
ginning and ending positions of the object, not all the information
about how it got from one position to the other.

self-check D
A ball falls vertically, hits the floor, bounces to a height of one meter,
falls, and hits the floor again. Is the ∆x between the two impacts equal
to zero, one, or two meters? . Answer, p. 523

Frames of reference

The example above shows that there are two arbitrary choices
you have to make in order to define a position variable, x. You have
to decide where to put x = 0, and also which direction will be posi-
tive. This is referred to as choosing a coordinate system or choosing
a frame of reference. (The two terms are nearly synonymous, but
the first focuses more on the actual x variable, while the second is
more of a general way of referring to one’s point of view.) As long as
you are consistent, any frame is equally valid. You just don’t want
to change coordinate systems in the middle of a calculation.
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o / Motion with constant ve-
locity.

p / Motion that decreases x
is represented with negative
values of ∆x and v .

q / Motion with changing ve-
locity. How can we find the
velocity at the time indicated by
the dot?

Have you ever been sitting in a train in a station when suddenly
you notice that the station is moving backward? Most people would
describe the situation by saying that you just failed to notice that
the train was moving — it only seemed like the station was moving.
But this shows that there is yet a third arbitrary choice that goes
into choosing a coordinate system: valid frames of reference can
differ from each other by moving relative to one another. It might
seem strange that anyone would bother with a coordinate system
that was moving relative to the earth, but for instance the frame of
reference moving along with a train might be far more convenient
for describing things happening inside the train.

2.3 Graphs of motion; velocity

Motion with constant velocity

In example o, an object is moving at constant speed in one di-
rection. We can tell this because every two seconds, its position
changes by five meters.

In algebra notation, we’d say that the graph of x vs. t shows
the same change in position, ∆x = 5.0 m, over each interval of
∆t = 2.0 s. The object’s velocity or speed is obtained by calculating
v = ∆x/∆t = (5.0 m)/(2.0 s) = 2.5 m/s. In graphical terms, the
velocity can be interpreted as the slope of the line. Since the graph
is a straight line, it wouldn’t have mattered if we’d taken a longer
time interval and calculated v = ∆x/∆t = (10.0 m)/(4.0 s). The
answer would still have been the same, 2.5 m/s.

Note that when we divide a number that has units of meters by
another number that has units of seconds, we get units of meters
per second, which can be written m/s. This is another case where
we treat units as if they were algebra symbols, even though they’re
not.

In example p, the object is moving in the opposite direction: as
time progresses, its x coordinate decreases. Recalling the definition
of the ∆ notation as “after minus before,” we find that ∆t is still
positive, but ∆x must be negative. The slope of the line is therefore
negative, and we say that the object has a negative velocity, v =
∆x/∆t = (−5.0 m)/(2.0 s) = −2.5 m/s. We’ve already seen that
the plus and minus signs of ∆x values have the interpretation of
telling us which direction the object moved. Since ∆t is always
positive, dividing by ∆t doesn’t change the plus or minus sign, and
the plus and minus signs of velocities are to be interpreted in the
same way. In graphical terms, a positive slope characterizes a line
that goes up as we go to the right, and a negative slope tells us that
the line went down as we went to the right.
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Motion with changing velocity

Now what about a graph like figure q? This might be a graph
of a car’s motion as the driver cruises down the freeway, then slows
down to look at a car crash by the side of the road, and then speeds
up again, disappointed that there is nothing dramatic going on such
as flames or babies trapped in their car seats. (Note that we are
still talking about one-dimensional motion. Just because the graph
is curvy doesn’t mean that the car’s path is curvy. The graph is not
like a map, and the horizontal direction of the graph represents the
passing of time, not distance.)

If we apply the equation v = ∆x/∆t to this example, we will
get the wrong answer, because the ∆x/∆t gives a single number,
but the velocity is clearly changing. This is an example of a good
general rule that tells you when you need to use your differential
calculus. Any time a rate of change is measured by an expression of
the form ∆ . . . /∆ . . ., the result will only be right when the rate of
change is constant. When the rate of change is varying, we need to
generalize the expression by making it into a derivative. Just as an
infinitesimally small1 ∆t is notated dt, an infinitesimally small ∆x
is a dx. The velocity is then the derivative dx/dt.

Units of velocity example 3
. Verify that the units of v = dx/dt make sense.

. We expect the velocity to have units of meters per second, and
it does come out to have those units, since dx has units of me-
ters and dt seconds. This ability to check the units of derivatives
is one of the main reason that Leibniz designed his notation for
derivatives the way he did.

An insect pest example 4
. An insect pest from the United States is inadvertently released
in a village in rural China. The pests spread outward at a rate
of s kilometers per year, forming a widening circle of contagion.
Find the number of square kilometers per year that become newly
infested. Check that the units of the result make sense. Interpret
the result.

. Let t be the time, in years, since the pest was introduced. The
radius of the circle is r = st , and its area is a = πr2 = π(st)2. The
derivative is

da
dt

= (2πs2)t

The units of s are km/year, so squaring it gives km2/year2. The 2
and the π are unitless, and multiplying by t gives units of km2/year,
which is what we expect for da/dt , since it represents the number
of square kilometers per year that become infested.

1see p. 65
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Interpreting the result, we notice a couple of things. First, the rate
of infestation isn’t constant; it’s proportional to t , so people might
not pay so much attention at first, but later on the effort required
to combat the problem will grow more and more quickly. Second,
we notice that the result is proportional to s2. This suggests that
anything that could be done to reduce s would be very helpful.
For instance, a measure that cut s in half would reduce da/dt by
a factor of four.

2.4 The principle of inertia
Physical effects relate only to a change in velocity

Consider two statements of a kind that was at one time made
with the utmost seriousness:

People like Galileo and Copernicus who say the earth is ro-
tating must be crazy. We know the earth can’t be moving.
Why, if the earth was really turning once every day, then our
whole city would have to be moving hundreds of leagues in
an hour. That’s impossible! Buildings would shake on their
foundations. Gale-force winds would knock us over. Trees
would fall down. The Mediterranean would come sweeping
across the east coasts of Spain and Italy. And furthermore,
what force would be making the world turn?

All this talk of passenger trains moving at forty miles an hour
is sheer hogwash! At that speed, the air in a passenger com-
partment would all be forced against the back wall. People in
the front of the car would suffocate, and people at the back
would die because in such concentrated air, they wouldn’t be
able to expel a breath.

Some of the effects predicted in the first quote are clearly just
based on a lack of experience with rapid motion that is smooth and
free of vibration. But there is a deeper principle involved. In each
case, the speaker is assuming that the mere fact of motion must
have dramatic physical effects. More subtly, they also believe that a
force is needed to keep an object in motion: the first person thinks
a force would be needed to maintain the earth’s rotation, and the
second apparently thinks of the rear wall as pushing on the air to
keep it moving.

Common modern knowledge and experience tell us that these
people’s predictions must have somehow been based on incorrect
reasoning, but it is not immediately obvious where the fundamental
flaw lies. It’s one of those things a four-year-old could infuriate
you by demanding a clear explanation of. One way of getting at
the fundamental principle involved is to consider how the modern
concept of the universe differs from the popular conception at the
time of the Italian Renaissance. To us, the word “earth” implies
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s / Why does Aristotle look
so sad? Has he realized that
his entire system of physics is
wrong?

t / The earth spins. People
in Shanghai say they’re at rest
and people in Los Angeles are
moving. Angelenos say the same
about the Shanghainese.

u / The jets are at rest. The
Empire State Building is moving.

a planet, one of the nine planets of our solar system, a small ball
of rock and dirt that is of no significance to anyone in the universe
except for members of our species, who happen to live on it. To
Galileo’s contemporaries, however, the earth was the biggest, most
solid, most important thing in all of creation, not to be compared
with the wandering lights in the sky known as planets. To us, the
earth is just another object, and when we talk loosely about “how
fast” an object such as a car “is going,” we really mean the car-
object’s velocity relative to the earth-object.

r / This Air Force doctor volunteered to ride a rocket sled as a medical
experiment. The obvious effects on his head and face are not because of
the sled’s speed but because of its rapid changes in speed: increasing
in 2 and 3, and decreasing in 5 and 6. In 4 his speed is greatest, but
because his speed is not increasing or decreasing very much at this
moment, there is little effect on him.

Motion is relative

According to our modern world-view, it really isn’t that reason-
able to expect that a special force should be required to make the
air in the train have a certain velocity relative to our planet. After
all, the “moving” air in the “moving” train might just happen to
have zero velocity relative to some other planet we don’t even know
about. Aristotle claimed that things “naturally” wanted to be at
rest, lying on the surface of the earth. But experiment after exper-
iment has shown that there is really nothing so special about being
at rest relative to the earth. For instance, if a mattress falls out of
the back of a truck on the freeway, the reason it rapidly comes to
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Discussion question A.

Discussion question B.

rest with respect to the planet is simply because of friction forces
exerted by the asphalt, which happens to be attached to the planet.

Galileo’s insights are summarized as follows:

The principle of inertia
No force is required to maintain motion with constant velocity in

a straight line, and absolute motion does not cause any observable
physical effects.

There are many examples of situations that seem to disprove the
principle of inertia, but these all result from forgetting that friction
is a force. For instance, it seems that a force is needed to keep a
sailboat in motion. If the wind stops, the sailboat stops too. But
the wind’s force is not the only force on the boat; there is also
a frictional force from the water. If the sailboat is cruising and
the wind suddenly disappears, the backward frictional force still
exists, and since it is no longer being counteracted by the wind’s
forward force, the boat stops. To disprove the principle of inertia,
we would have to find an example where a moving object slowed
down even though no forces whatsoever were acting on it. Over the
years since Newton’s lifetime, physicists have done more and more
precise experiments to search for such a counterexample, but the
results have always been negative. Section 4.7 describes one such
observation that achieved a precision of one part in 107.

self-check E
What is incorrect about the following supposed counterexamples to the
principle of inertia?

(1) When astronauts blast off in a rocket, their huge velocity does cause
a physical effect on their bodies — they get pressed back into their
seats, the flesh on their faces gets distorted, and they have a hard time
lifting their arms.

(2) When you’re driving in a convertible with the top down, the wind in
your face is an observable physical effect of your absolute motion. .

Answer, p. 523

. Solved problem: a bug on a wheel page 93, problem 13

Discussion questions

A A passenger on a cruise ship finds, while the ship is docked, that
he can leap off of the upper deck and just barely make it into the pool
on the lower deck. If the ship leaves dock and is cruising rapidly, will this
adrenaline junkie still be able to make it?

B You are a passenger in the open basket hanging under a helium
balloon. The balloon is being carried along by the wind at a constant
velocity. If you are holding a flag in your hand, will the flag wave? If so,
which way? [Based on a question from PSSC Physics.]

C Aristotle stated that all objects naturally wanted to come to rest, with
the unspoken implication that “rest” would be interpreted relative to the
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Discussion question D.

surface of the earth. Suppose we go back in time and transport Aristotle
to the moon. Aristotle knew, as we do, that the moon circles the earth; he
said it didn’t fall down because, like everything else in the heavens, it was
made out of some special substance whose “natural” behavior was to go
in circles around the earth. We land, put him in a space suit, and kick
him out the door. What would he expect his fate to be in this situation? If
intelligent creatures inhabited the moon, and one of them independently
came up with the equivalent of Aristotelian physics, what would they think
about objects coming to rest?

D The glass is sitting on a level table in a train’s dining car, but the
surface of the water is tilted. What can you infer about the motion of the
train?

2.5 Addition of velocities
Addition of velocities to describe relative motion

Since absolute motion cannot be unambiguously measured, the
only way to describe motion unambiguously is to describe the motion
of one object relative to another. Symbolically, we can write vPQ
for the velocity of object P relative to object Q.

Velocities measured with respect to different reference points can
be compared by addition. In the figure below, the ball’s velocity
relative to the couch equals the ball’s velocity relative to the truck
plus the truck’s velocity relative to the couch:

vBC = vBT + vTC

= 5 cm/s + 10 cm/s

= 15 cm/s

The same equation can be used for any combination of three
objects, just by substituting the relevant subscripts for B, T, and
C. Just remember to write the equation so that the velocities being
added have the same subscript twice in a row. In this example, if
you read off the subscripts going from left to right, you get BC . . . =
. . .BTTC. The fact that the two “inside” subscripts on the right are
the same means that the equation has been set up correctly. Notice
how subscripts on the left look just like the subscripts on the right,
but with the two T’s eliminated.

Negative velocities in relative motion

My discussion of how to interpret positive and negative signs of
velocity may have left you wondering why we should bother. Why
not just make velocity positive by definition? The original reason
why negative numbers were invented was that bookkeepers decided
it would be convenient to use the negative number concept for pay-
ments to distinguish them from receipts. It was just plain easier than
writing receipts in black and payments in red ink. After adding up
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v / These two highly competent physicists disagree on absolute ve-
locities, but they would agree on relative velocities. Purple Dino
considers the couch to be at rest, while Green Dino thinks of the truck as
being at rest. They agree, however, that the truck’s velocity relative to the
couch is vTC = 10 cm/s, the ball’s velocity relative to the truck is vBT = 5
cm/s, and the ball’s velocity relative to the couch is vBC = vBT + vTC = 15
cm/s.

your month’s positive receipts and negative payments, you either got
a positive number, indicating profit, or a negative number, showing
a loss. You could then show that total with a high-tech “+” or “−”
sign, instead of looking around for the appropriate bottle of ink.

Nowadays we use positive and negative numbers for all kinds
of things, but in every case the point is that it makes sense to
add and subtract those things according to the rules you learned
in grade school, such as “minus a minus makes a plus, why this is
true we need not discuss.” Adding velocities has the significance
of comparing relative motion, and with this interpretation negative
and positive velocities can be used within a consistent framework.
For example, the truck’s velocity relative to the couch equals the
truck’s velocity relative to the ball plus the ball’s velocity relative
to the couch:

vTC = vTB + vBC

= −5 cm/s + 15 cm/s

= 10 cm/s

If we didn’t have the technology of negative numbers, we would have
had to remember a complicated set of rules for adding velocities: (1)
if the two objects are both moving forward, you add, (2) if one is
moving forward and one is moving backward, you subtract, but (3)
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if they’re both moving backward, you add. What a pain that would
have been.

. Solved problem: two dimensions page 93, problem 10

Airspeed example 5
On June 1, 2009, Air France flight 447 disappeared without warn-
ing over the Atlantic Ocean. All 232 people aboard were killed.
Investigators believe the disaster was triggered because the pilots
lost the ability to accurately determine their speed relative to the
air. This is done using sensors called Pitot tubes, mounted out-
side the plane on the wing. Automated radio signals showed that
these sensors gave conflicting readings before the crash, possi-
bly because they iced up. For fuel efficiency, modern passenger
jets fly at a very high altitude, but in the thin air they can only fly
within a very narrow range of speeds. If the speed is too low, the
plane stalls, and if it’s too high, it breaks up. If the pilots can’t tell
what their airspeed is, they can’t keep it in the safe range.

Many people’s reaction to this story is to wonder why planes don’t
just use GPS to measure their speed. One reason is that GPS
tells you your speed relative to the ground, not relative to the air.
Letting P be the plane, A the air, and G the ground, we have

vPG = vPA + vAG ,

where vPG (the “true ground speed”) is what GPS would measure,
vPA (“airspeed”) is what’s critical for stable flight, and vAG is the
velocity of the wind relative to the ground 9000 meters below.
Knowing vPG isn’t enough to determine vPA unless vAG is also
known.

w / 1. The same aircraft before the disaster. 2. A Pitot tube. 3. The flight path of flight 447. 4. Wreck-
age being recovered.

Discussion questions

A Interpret the general rule vAB = −vBA in words.

B Wa-Chuen slips away from her father at the mall and walks up the
down escalator, so that she stays in one place. Write this in terms of
symbols.
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x / This Global Positioning
System (GPS) system, running
on a smartphone attached to a
bike’s handlebar, depends on
Einstein’s theory of relativity.
Time flows at a different rates
aboard a GPS satellite than it
does on the bike, and the GPS
software has to take this into
account.

y / The clock took up two seats,
and two tickets were bought for it
under the name of “Mr. Clock.”

z / Newton’s laws do not dis-
tinguish past from future. The
football could travel in either
direction while obeying Newton’s
laws.

2.6 ? Relativity
Time is not absolute

So far we’ve been discussing relativity according to Galileo and
Newton, but there is also relativity according to Einstein. When
Einstein first began to develop the theory of relativity, around 1905,
the only real-world observations he could draw on were ambiguous
and indirect. Today, the evidence is part of everyday life. For ex-
ample, every time you use a GPS receiver, x, you’re using Einstein’s
theory of relativity. Somewhere between 1905 and today, technol-
ogy became good enough to allow conceptually simple experiments
that students in the early 20th century could only discuss in terms
like “Imagine that we could. . . ” A good jumping-on point is 1971.
In that year, J.C. Hafele and R.E. Keating brought atomic clocks
aboard commercial airliners, y, and went around the world, once
from east to west and once from west to east. Hafele and Keating
observed that there was a discrepancy between the times measured
by the traveling clocks and the times measured by similar clocks
that stayed home at the U.S. Naval Observatory in Washington.
The east-going clock lost time, ending up off by −59 ± 10 nanosec-
onds, while the west-going one gained 273± 7 ns.

The correspondence principle

This establishes that time doesn’t work the way Newton believed
it did when he wrote that “Absolute, true, and mathematical time,
of itself, and from its own nature flows equably without regard to
anything external. . . ” We are used to thinking of time as absolute
and universal, so it is disturbing to find that it can flow at a different
rate for observers in different frames of reference. Nevertheless, the
effects that Hafele and Keating observed were small. This makes
sense: Newton’s laws have already been thoroughly tested by ex-
periments under a wide variety of conditions, so a new theory like
relativity must agree with Newton’s to a good approximation, within
the Newtonian theory’s realm of applicability. This requirement of
backward-compatibility is known as the correspondence principle.

Causality

It’s also reassuring that the effects on time were small compared
to the three-day lengths of the plane trips. There was therefore no
opportunity for paradoxical scenarios such as one in which the east-
going experimenter arrived back in Washington before he left and
then convinced himself not to take the trip. A theory that maintains
this kind of orderly relationship between cause and effect is said to
satisfy causality.

Causality is like a water-hungry front-yard lawn in Los Angeles:
we know we want it, but it’s not easy to explain why. Even in plain
old Newtonian physics, there is no clear distinction between past

Section 2.6 ? Relativity 75



aa / All three clocks are moving
to the east. Even though the
west-going plane is moving to the
west relative to the air, the air
is moving to the east due to the
earth’s rotation.

and future. In figure z, number 18 throws the football to number
25, and the ball obeys Newton’s laws of motion. If we took a video
of the pass and played it backward, we would see the ball flying from
25 to 18, and Newton’s laws would still be satisfied. Nevertheless,
we have a strong psychological impression that there is a forward
arrow of time. I can remember what the stock market did last year,
but I can’t remember what it will do next year. Joan of Arc’s mil-
itary victories against England caused the English to burn her at
the stake; it’s hard to accept that Newton’s laws provide an equally
good description of a process in which her execution in 1431 caused
her to win a battle in 1429. There is no consensus at this point
among physicists on the origin and significance of time’s arrow, and
for our present purposes we don’t need to solve this mystery. In-
stead, we merely note the empirical fact that, regardless of what
causality really means and where it really comes from, its behavior
is consistent. Specifically, experiments show that if an observer in a
certain frame of reference observes that event A causes event B, then
observers in other frames agree that A causes B, not the other way
around. This is merely a generalization about a large body of ex-
perimental results, not a logically necessary assumption. If Keating
had gone around the world and arrived back in Washington before
he left, it would have disproved this statement about causality.

Time distortion arising from motion and gravity

Hafele and Keating were testing specific quantitative predictions
of relativity, and they verified them to within their experiment’s
error bars. Let’s work backward instead, and inspect the empirical
results for clues as to how time works.

The two traveling clocks experienced effects in opposite direc-
tions, and this suggests that the rate at which time flows depends
on the motion of the observer. The east-going clock was moving in
the same direction as the earth’s rotation, so its velocity relative to
the earth’s center was greater than that of the clock that remained
in Washington, while the west-going clock’s velocity was correspond-
ingly reduced. The fact that the east-going clock fell behind, and
the west-going one got ahead, shows that the effect of motion is to
make time go more slowly. This effect of motion on time was pre-
dicted by Einstein in his original 1905 paper on relativity, written
when he was 26.

If this had been the only effect in the Hafele-Keating experiment,
then we would have expected to see effects on the two flying clocks
that were equal in size. Making up some simple numbers to keep the
arithmetic transparent, suppose that the earth rotates from west to
east at 1000 km/hr, and that the planes fly at 300 km/hr. Then the
speed of the clock on the ground is 1000 km/hr, the speed of the
clock on the east-going plane is 1300 km/hr, and that of the west-
going clock 700 km/hr. Since the speeds of 700, 1000, and 1300
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ab / The correspondence princi-
ple requires that the relativistic
distortion of time become small
for small velocities.

km/hr have equal spacing on either side of 1000, we would expect
the discrepancies of the moving clocks relative to the one in the lab
to be equal in size but opposite in sign.

In fact, the two effects are unequal in size: −59 ns and 273 ns.
This implies that there is a second effect involved, simply due to the
planes’ being up in the air. Relativity predicts that time’s rate of
flow also changes with height in a gravitational field. Einstein didn’t
figure out how to incorporate gravity into relativity until 1915, after
much frustration and many false starts. The simpler version of the
theory without gravity is known as special relativity, the full version
as general relativity. We’ll restrict ourselves to special relativity in
this book, and that means that what we want to focus on right now
is the distortion of time due to motion, not gravity.

We can now see in more detail how to apply the correspondence
principle. The behavior of the three clocks in the Hafele-Keating
experiment shows that the amount of time distortion increases as
the speed of the clock’s motion increases. Newton lived in an era
when the fastest mode of transportation was a galloping horse, and
the best pendulum clocks would accumulate errors of perhaps a
minute over the course of several days. A horse is much slower
than a jet plane, so the distortion of time would have had a relative
size of only ∼ 10−15 — much smaller than the clocks were capable
of detecting. At the speed of a passenger jet, the effect is about
10−12, and state-of-the-art atomic clocks in 1971 were capable of
measuring that. A GPS satellite travels much faster than a jet air-
plane, and the effect on the satellite turns out to be ∼ 10−10. The
general idea here is that all physical laws are approximations, and
approximations aren’t simply right or wrong in different situations.
Approximations are better or worse in different situations, and the
question is whether a particular approximation is good enough in a
given situation to serve a particular purpose. The faster the motion,
the worse the Newtonian approximation of absolute time. Whether
the approximation is good enough depends on what you’re trying
to accomplish. The correspondence principle says that the approxi-
mation must have been good enough to explain all the experiments
done in the centuries before Einstein came up with relativity.

By the way, don’t get an inflated idea of the importance of the
Hafele-Keating experiment. Special relativity had already been con-
firmed by a vast and varied body of experiments decades before 1971.
The only reason I’m giving such a prominent role to this experiment,
which was actually more important as a test of general relativity, is
that it is conceptually very direct.
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ac / Two events are given as
points on a graph of position
versus time. Joan of Arc helps to
restore Charles VII to the throne.
At a later time and a different
position, Joan of Arc is sentenced
to death.

ad / A change of units dis-
torts an x-t graph. This graph
depicts exactly the same events
as figure ac. The only change is
that the x and t coordinates are
measured using different units,
so the grid is compressed in t
and expanded in x .

ae / A convention we’ll use
to represent a distortion of time
and space.

Distortion of space and time

The Lorentz transformation

Relativity says that when two observers are in different frames of
reference, each observer considers the other one’s perception of time
to be distorted. We’ll also see that something similar happens to
their observations of distances, so both space and time are distorted.
What exactly is this distortion? How do we even conceptualize it?

The idea isn’t really as radical as it might seem at first. We
can visualize the structure of space and time using a graph with
position and time on its axes. These graphs are familiar by now,
but we’re going to look at them in a slightly different way. Before, we
used them to describe the motion of objects. The grid underlying
the graph was merely the stage on which the actors played their
parts. Now the background comes to the foreground: it’s time and
space themselves that we’re studying. We don’t necessarily need
to have a line or a curve drawn on top of the grid to represent a
particular object. We may, for example, just want to talk about
events, depicted as points on the graph as in figure ac. A distortion
of the Cartesian grid underlying the graph can arise for perfectly
ordinary reasons that Isaac Newton would have readily accepted.
For example, we can simply change the units used to measure time
and position, as in figure ad.

We’re going to have quite a few examples of this type, so I’ll
adopt the convention shown in figure ae for depicting them. Figure
ae summarizes the relationship between figures ac and ad in a more
compact form. The gray rectangle represents the original coordinate
grid of figure ac, while the grid of black lines represents the new
version from figure ad. Omitting the grid from the gray rectangle
makes the diagram easier to decode visually.

Our goal of unraveling the mysteries of special relativity amounts
to nothing more than finding out how to draw a diagram like ae
in the case where the two different sets of coordinates represent
measurements of time and space made by two different observers,
each in motion relative to the other. Galileo and Newton thought
they knew the answer to this question, but their answer turned
out to be only approximately right. To avoid repeating the same
mistakes, we need to clearly spell out what we think are the basic
properties of time and space that will be a reliable foundation for
our reasoning. I want to emphasize that there is no purely logical
way of deciding on this list of properties. The ones I’ll list are simply
a summary of the patterns observed in the results from a large body
of experiments. Furthermore, some of them are only approximate.
For example, property 1 below is only a good approximation when
the gravitational field is weak, so it is a property that applies to
special relativity, not to general relativity.
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af / A Galilean version of the
relationship between two frames
of reference. As in all such
graphs in this chapter, the original
coordinates, represented by the
gray rectangle, have a time axis
that goes to the right, and a
position axis that goes straight
up.

Experiments show that:

1. No point in time or space has properties that make it different
from any other point.

2. Likewise, all directions in space have the same properties.

3. Motion is relative, i.e., all inertial frames of reference are
equally valid.

4. Causality holds, in the sense described on page 75.

5. Time depends on the state of motion of the observer.

Most of these are not very subversive. Properties 1 and 2 date
back to the time when Galileo and Newton started applying the
same universal laws of motion to the solar system and to the earth;
this contradicted Aristotle, who believed that, for example, a rock
would naturally want to move in a certain special direction (down)
in order to reach a certain special location (the earth’s surface).
Property 3 is the reason that Einstein called his theory “relativity,”
but Galileo and Newton believed exactly the same thing to be true,
as dramatized by Galileo’s run-in with the Church over the question
of whether the earth could really be in motion around the sun.
Property 4 would probably surprise most people only because it
asserts in such a weak and specialized way something that they feel
deeply must be true. The only really strange item on the list is 5,
but the Hafele-Keating experiment forces it upon us.

If it were not for property 5, we could imagine that figure af
would give the correct transformation between frames of reference
in motion relative to one another. Let’s say that observer 1, whose
grid coincides with the gray rectangle, is a hitch-hiker standing by
the side of a road. Event A is a raindrop hitting his head, and
event B is another raindrop hitting his head. He says that A and B
occur at the same location in space. Observer 2 is a motorist who
drives by without stopping; to him, the passenger compartment of
his car is at rest, while the asphalt slides by underneath. He says
that A and B occur at different points in space, because during the
time between the first raindrop and the second, the hitch-hiker has
moved backward. On the other hand, observer 2 says that events A
and C occur in the same place, while the hitch-hiker disagrees. The
slope of the grid-lines is simply the velocity of the relative motion
of each observer relative to the other.

Figure af has familiar, comforting, and eminently sensible behav-
ior, but it also happens to be wrong, because it violates property
5. The distortion of the coordinate grid has only moved the vertical
lines up and down, so both observers agree that events like B and
C are simultaneous. If this was really the way things worked, then
all observers could synchronize all their clocks with one another for
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ag / A transformation that leads
to disagreements about whether
two events occur at the same
time and place. This is not just
a matter of opinion. Either the
arrow hit the bull’s-eye or it didn’t.

ah / A nonlinear transforma-
tion.

once and for all, and the clocks would never get out of sync. This
contradicts the results of the Hafele-Keating experiment, in which
all three clocks were initially synchronized in Washington, but later
went out of sync because of their different states of motion.

It might seem as though we still had a huge amount of wiggle
room available for the correct form of the distortion. It turns out,
however, that properties 1-5 are sufficient to prove that there is only
one answer, which is the one found by Einstein in 1905. To see why
this is, let’s work by a process of elimination.

Figure ag shows a transformation that might seem at first glance
to be as good a candidate as any other, but it violates property 3,
that motion is relative, for the following reason. In observer 2’s
frame of reference, some of the grid lines cross one another. This
means that observers 1 and 2 disagree on whether or not certain
events are the same. For instance, suppose that event A marks the
arrival of an arrow at the bull’s-eye of a target, and event B is the
location and time when the bull’s-eye is punctured. Events A and
B occur at the same location and at the same time. If one observer
says that A and B coincide, but another says that they don’t, we
have a direct contradiction. Since the two frames of reference in
figure ag give contradictory results, one of them is right and one
is wrong. This violates property 3, because all inertial frames of
reference are supposed to be equally valid. To avoid problems like
this, we clearly need to make sure that none of the grid lines ever
cross one another.

The next type of transformation we want to kill off is shown in
figure ah, in which the grid lines curve, but never cross one another.
The trouble with this one is that it violates property 1, the unifor-
mity of time and space. The transformation is unusually “twisty”
at A, whereas at B it’s much more smooth. This can’t be correct,
because the transformation is only supposed to depend on the rela-
tive state of motion of the two frames of reference, and that given
information doesn’t single out a special role for any particular point
in spacetime. If, for example, we had one frame of reference rotating
relative to the other, then there would be something special about
the axis of rotation. But we’re only talking about inertial frames of
reference here, as specified in property 3, so we can’t have rotation;
each frame of reference has to be moving in a straight line at con-
stant speed. For frames related in this way, there is nothing that
could single out an event like A for special treatment compared to
B, so transformation ah violates property 1.

The examples in figures ag and ah show that the transformation
we’re looking for must be linear, meaning that it must transform
lines into lines, and furthermore that it has to take parallel lines to
parallel lines. Einstein wrote in his 1905 paper that “. . . on account
of the property of homogeneity [property 1] which we ascribe to time
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aj / In the units that are most
convenient for relativity, the trans-
formation has symmetry about a
45-degree diagonal line.

and space, the [transformation] must be linear.”2 Applying this to
our diagrams, the original gray rectangle, which is a special type
of parallelogram containing right angles, must be transformed into
another parallelogram. There are three types of transformations,
figure ai, that have this property. Case I is the Galilean transfor-
mation of figure af on page 79, which we’ve already ruled out.

ai / Three types of transformations that preserve parallelism. Their
distinguishing feature is what they do to simultaneity, as shown by what
happens to the left edge of the original rectangle. In I, the left edge
remains vertical, so simultaneous events remain simultaneous. In II, the
left edge turns counterclockwise. In III, it turns clockwise.

Case II can also be discarded. Here every point on the grid ro-
tates counterclockwise. What physical parameter would determine
the amount of rotation? The only thing that could be relevant would
be v, the relative velocity of the motion of the two frames of reference
with respect to one another. But if the angle of rotation was pro-
portional to v, then for large enough velocities the grid would have
left and right reversed, and this would violate property 4, causality:
one observer would say that event A caused a later event B, but
another observer would say that B came first and caused A.

The only remaining possibility is case III, which I’ve redrawn in
figure aj with a couple of changes. This is the one that Einstein
predicted in 1905. The transformation is known as the Lorentz
transformation, after Hendrik Lorentz (1853-1928), who partially
anticipated Einstein’s work, without arriving at the correct inter-
pretation. The distortion is a kind of smooshing and stretching, as
suggested by the hands. Also, we’ve already seen in figures ac-ae on
page 78 that we’re free to stretch or compress everything as much as
we like in the horizontal and vertical directions, because this simply
corresponds to choosing different units of measurement for time and
distance. In figure aj I’ve chosen units that give the whole drawing
a convenient symmetry about a 45-degree diagonal line. Ordinarily
it wouldn’t make sense to talk about a 45-degree angle on a graph
whose axes had different units. But in relativity, the symmetric ap-
pearance of the transformation tells us that space and time ought

2A. Einstein, “On the Electrodynamics of Moving Bodies,” Annalen der
Physik 17 (1905), p. 891, tr. Saha and Bose, 1920
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ak / Interpretation of the Lorentz
transformation. The slope in-
dicated in the figure gives the
relative velocity of the two frames
of reference. Events A and B that
were simultaneous in frame 1
are not simultaneous in frame 2,
where event A occurs to the right
of the t = 0 line represented by
the left edge of the grid, but event
B occurs to its left.

to be treated on the same footing, and measured in the same units.

As in our discussion of the Galilean transformation, slopes are
interpreted as velocities, and the slope of the near-horizontal lines in
figure ak is interpreted as the relative velocity of the two observers.
The difference between the Galilean version and the relativistic one
is that now there is smooshing happening from the other side as
well. Lines that were vertical in the original grid, representing si-
multaneous events, now slant over to the right. This tells us that, as
required by property 5, different observers do not agree on whether
events that occur in different places are simultaneous. The Hafele-
Keating experiment tells us that this non-simultaneity effect is fairly
small, even when the velocity is as big as that of a passenger jet,
and this is what we would have anticipated by the correspondence
principle. The way that this is expressed in the graph is that if we
pick the time unit to be the second, then the distance unit turns out
to be hundreds of thousands of miles. In these units, the velocity
of a passenger jet is an extremely small number, so the slope v in
figure ak is extremely small, and the amount of distortion is tiny —
it would be much too small to see on this scale.

The only thing left to determine about the Lorentz transforma-
tion is the size of the transformed parallelogram relative to the size
of the original one. Although the drawing of the hands in figure aj
may suggest that the grid deforms like a framework made of rigid
coat-hanger wire, that is not the case. If you look carefully at the
figure, you’ll see that the edges of the smooshed parallelogram are
actually a little longer than the edges of the original rectangle. In
fact what stays the same is not lengths but areas. The proof of this
fact is straightforward, but a little lengthy, so I’ve relegated it to
section 2.6.3. Oversimplifying a little, the basic idea of the proof is
that it wouldn’t make sense if the area was increased by the Lorentz
transformation, because then area would have to be decreased by
a Lorentz transformation corresponding to motion in the opposite
direction, and this would violate property 2 on page 79, which states
that all directions in space have the same properties.

The G factor

With a little algebra and geometry (homework problem 18, page
94), one can use the equal-area property to show that the factor G
(Greek letter gamma) defined in figure al is given by the equation

G =
1√

1− v2
.

If you’ve had good training in physics, the first thing you probably
think when you look at this equation is that it must be nonsense,
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al / The G factor.

because its units don’t make sense. How can we take something
with units of velocity squared, and subtract it from a unitless 1?
But remember that this is expressed in our special relativistic units,
in which the same units are used for distance and time. In this
system, velocities are always unitless. This sort of thing happens
frequently in physics. For instance, before James Joule discovered
conservation of energy, nobody knew that heat and mechanical en-
ergy were different forms of the same thing, so instead of measuring
them both in units of joules as we would do now, they measured
heat in one unit (such as calories) and mechanical energy in another
(such as foot-pounds). In ordinary metric units, we just need an
extra convension factor c, and the equation becomes

G =
1√

1−
(
v
c

)2 .

Here’s why we care about G. Figure al defines it as the ratio of
two times: the time between two events as expressed in one coordi-
nate system, and the time between the same two events as measured
in the other one. The interpretation is:

Time dilation
A clock runs fastest in the frame of reference of an observer
who is at rest relative to the clock. An observer in motion
relative to the clock at speed v perceives the clock as running
more slowly by a factor of G.

Since the Lorentz transformation treats time and distance entirely
symmetrically, we could just as well have defined G using the upright
x axis in figure al, and we therefore have a similar interpretation in
terms of space:

Length contraction
A meter-stick appears longest to an observer who is at rest
relative to it. An observer moving relative to the meter-stick
at v observes the stick to be shortened by a factor of G.

self-check F
What is G when v = 0? What does this mean? . Answer, p. 523
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an / Muons accelerated to
nearly c undergo radioactive de-
cay much more slowly than they
would according to an observer
at rest with respect to the muons.
The first two data-points (unfilled
circles) were subject to large
systematic errors.

am / Apparatus used for the test
of relativistic time dilation de-
scribed in example 6. The promi-
nent black and white blocks are
large magnets surrounding a cir-
cular pipe with a vacuum inside.
(c) 1974 by CERN.

Large time dilation example 6
The time dilation effect in the Hafele-Keating experiment was very
small. If we want to see a large time dilation effect, we can’t do
it with something the size of the atomic clocks they used; the ki-
netic energy would be greater than the total megatonnage of all
the world’s nuclear arsenals. We can, however, accelerate sub-
atomic particles to speeds at which G is large. For experimental
particle physicists, relativity is something you do all day before
heading home and stopping off at the store for milk. An early, low-
precision experiment of this kind was performed by Rossi and Hall
in 1941, using naturally occurring cosmic rays. Figure am shows
a 1974 experiment3 of a similar type which verified the time di-
lation predicted by relativity to a precision of about one part per
thousand.

Particles called muons (named after the Greek letter µ, “myoo”)
were produced by an accelerator at CERN, near Geneva. A muon
is essentially a heavier version of the electron. Muons undergo
radioactive decay, lasting an average of only 2.197 µs before they
evaporate into an electron and two neutrinos. The 1974 experi-
ment was actually built in order to measure the magnetic proper-
ties of muons, but it produced a high-precision test of time dilation
as a byproduct. Because muons have the same electric charge
as electrons, they can be trapped using magnetic fields. Muons
were injected into the ring shown in figure am, circling around
it until they underwent radioactive decay. At the speed at which
these muons were traveling, they had G = 29.33, so on the av-
erage they lasted 29.33 times longer than the normal lifetime. In
other words, they were like tiny alarm clocks that self-destructed
at a randomly selected time. Figure an shows the number of ra-
dioactive decays counted, as a function of the time elapsed af-
ter a given stream of muons was injected into the storage ring.
3Bailey at al., Nucl. Phys. B150(1979) 1
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ap / In the garage’s frame of
reference, 1, the bus is moving,
and can fit in the garage. In the
bus’s frame of reference, the
garage is moving, and can’t hold
the bus.

The two dashed lines show the rates of decay predicted with and
without relativity. The relativistic line is the one that agrees with
experiment.

An example of length contraction example 7
Figure ao shows an artist’s rendering of the length contraction
for the collision of two gold nuclei at relativistic speeds in the
RHIC accelerator in Long Island, New York, which went on line
in 2000. The gold nuclei would appear nearly spherical (or just
slightly lengthened like an American football) in frames moving
along with them, but in the laboratory’s frame, they both appear
drastically foreshortened as they approach the point of collision.
The later pictures show the nuclei merging to form a hot soup, in
which experimenters hope to observe a new form of matter.

ao / Colliding nuclei show rela-
tivistic length contraction.

The garage paradox example 8
One of the most famous of all the so-called relativity paradoxes
has to do with our incorrect feeling that simultaneity is well de-
fined. The idea is that one could take a schoolbus and drive it at
relativistic speeds into a garage of ordinary size, in which it nor-
mally would not fit. Because of the length contraction, the bus
would supposedly fit in the garage. The paradox arises when we
shut the door and then quickly slam on the brakes of the bus.
An observer in the garage’s frame of reference will claim that the
bus fit in the garage because of its contracted length. The driver,
however, will perceive the garage as being contracted and thus
even less able to contain the bus. The paradox is resolved when
we recognize that the concept of fitting the bus in the garage “all
at once” contains a hidden assumption, the assumption that it
makes sense to ask whether the front and back of the bus can
simultaneously be in the garage. Observers in different frames
of reference moving at high relative speeds do not necessarily
agree on whether things happen simultaneously. The person in
the garage’s frame can shut the door at an instant he perceives to
be simultaneous with the front bumper’s arrival at the back wall of
the garage, but the driver would not agree about the simultaneity
of these two events, and would perceive the door as having shut
long after she plowed through the back wall.
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aq / A proof that causality
imposes a universal speed limit.
In the original frame of reference,
represented by the square, event
A happens a little before event B.
In the new frame, shown by the
parallelogram, A happens after
t = 0, but B happens before t = 0;
that is, B happens before A. The
time ordering of the two events
has been reversed. This can only
happen because events A and B
are very close together in time
and fairly far apart in space. The
line segment connecting A and
B has a slope greater than 1,
meaning that if we wanted to be
present at both events, we would
have to travel at a speed greater
than c (which equals 1 in the
units used on this graph). You will
find that if you pick any two points
for which the slope of the line
segment connecting them is less
than 1, you can never get them to
straddle the new t = 0 line in this
funny, time-reversed way. Since
different observers disagree on
the time order of events like A
and B, causality requires that
information never travel from
A to B or from B to A; if it did,
then we would have time-travel
paradoxes. The conclusion is that
c is the maximum speed of cause
and effect in relativity.

The universal speed c

Let’s think a little more about the role of the 45-degree diagonal
in the Lorentz transformation. Slopes on these graphs are inter-
preted as velocities. This line has a slope of 1 in relativistic units,
but that slope corresponds to c in ordinary metric units. We al-
ready know that the relativistic distance unit must be extremely
large compared to the relativistic time unit, so c must be extremely
large. Now note what happens when we perform a Lorentz transfor-
mation: this particular line gets stretched, but the new version of
the line lies right on top of the old one, and its slope stays the same.
In other words, if one observer says that something has a velocity
equal to c, every other observer will agree on that velocity as well.
(The same thing happens with −c.)

. Velocities don’t simply add and subtract.

This is surprising, since we expect, as in section 2.5.1, that a
velocity c in one frame should become c + v in a frame moving
at velocity v relative to the first one. But velocities are measured
by dividing a distance by a time, and both distance and time are
distorted by relativistic effects, so we actually shouldn’t expect the
ordinary arithmetic addition of velocities to hold in relativity; it’s
an approximation that’s valid at velocities that are small compared
to c. Problem 22 on p. 96 shows that relativistically, combining
velocities u and v gives not u + v but (u + v)/(1 + uv) (in units
where c = 1).

. A universal speed limit

For example, suppose Janet takes a trip in a spaceship, and
accelerates until she is moving at 0.6c relative to the earth. She
then launches a space probe in the forward direction at a speed
relative to her ship of 0.6c. We might think that the probe was then
moving at a velocity of 1.2c, but in fact the answer is still less than
c (problem 21, page 95). This is an example of a more general fact
about relativity, which is that c represents a universal speed limit.
This is required by causality, as shown in figure aq.

. Light travels at c.

Now consider a beam of light. We’re used to talking casually
about the “speed of light,” but what does that really mean? Motion
is relative, so normally if we want to talk about a velocity, we have
to specify what it’s measured relative to. A sound wave has a certain
speed relative to the air, and a water wave has its own speed relative
to the water. If we want to measure the speed of an ocean wave, for
example, we should make sure to measure it in a frame of reference
at rest relative to the water. But light isn’t a vibration of a physical
medium; it can propagate through the near-perfect vacuum of outer
space, as when rays of sunlight travel to earth. This seems like a
paradox: light is supposed to have a specific speed, but there is no
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way to decide what frame of reference to measure it in. The way
out of the paradox is that light must travel at a velocity equal to c.
Since all observers agree on a velocity of c, regardless of their frame
of reference, everything is consistent.

. The Michelson-Morley experiment

The constancy of the speed of light had in fact already been
observed when Einstein was an 8-year-old boy, but because nobody
could figure out how to interpret it, the result was largely ignored.
In 1887 Michelson and Morley set up a clever apparatus to measure
any difference in the speed of light beams traveling east-west and
north-south. The motion of the earth around the sun at 110,000
km/hour (about 0.01% of the speed of light) is to our west during the
day. Michelson and Morley believed that light was a vibration of a
mysterious medium called the ether, so they expected that the speed
of light would be a fixed value relative to the ether. As the earth
moved through the ether, they thought they would observe an effect
on the velocity of light along an east-west line. For instance, if they
released a beam of light in a westward direction during the day, they
expected that it would move away from them at less than the normal
speed because the earth was chasing it through the ether. They were
surprised when they found that the expected 0.01% change in the
speed of light did not occur.

ar / The Michelson-Morley experi-
ment, shown in photographs, and
drawings from the original 1887
paper. 1. A simplified draw-
ing of the apparatus. A beam of
light from the source, s, is par-
tially reflected and partially trans-
mitted by the half-silvered mirror
h1. The two half-intensity parts of
the beam are reflected by the mir-
rors at a and b, reunited, and ob-
served in the telescope, t. If the
earth’s surface was supposed to
be moving through the ether, then
the times taken by the two light
waves to pass through the mov-
ing ether would be unequal, and
the resulting time lag would be
detectable by observing the inter-
ference between the waves when
they were reunited. 2. In the real
apparatus, the light beams were
reflected multiple times. The ef-
fective length of each arm was
increased to 11 meters, which
greatly improved its sensitivity to
the small expected difference in
the speed of light. 3. In an
earlier version of the experiment,
they had run into problems with
its “extreme sensitiveness to vi-
bration,” which was “so great that
it was impossible to see the in-
terference fringes except at brief
intervals . . . even at two o’clock
in the morning.” They therefore
mounted the whole thing on a
massive stone floating in a pool of
mercury, which also made it pos-
sible to rotate it easily. 4. A photo
of the apparatus.
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Discussion question B

Discussion questions

A A person in a spaceship moving at 99.99999999% of the speed
of light relative to Earth shines a flashlight forward through dusty air, so
the beam is visible. What does she see? What would it look like to an
observer on Earth?

B A question that students often struggle with is whether time and
space can really be distorted, or whether it just seems that way. Compare
with optical illusions or magic tricks. How could you verify, for instance,
that the lines in the figure are actually parallel? Are relativistic effects the
same, or not?

C On a spaceship moving at relativistic speeds, would a lecture seem
even longer and more boring than normal?

D Mechanical clocks can be affected by motion. For example, it was
a significant technological achievement to build a clock that could sail
aboard a ship and still keep accurate time, allowing longitude to be deter-
mined. How is this similar to or different from relativistic time dilation?

E Figure ao from page 85, depicting the collision of two nuclei at the
RHIC accelerator, is reproduced below. What would the shapes of the two
nuclei look like to a microscopic observer riding on the left-hand nucleus?
To an observer riding on the right-hand one? Can they agree on what is
happening? If not, why not — after all, shouldn’t they see the same thing
if they both compare the two nuclei side-by-side at the same instant in
time?

as / Discussion question E: colliding nuclei show relativistic length
contraction.

F If you stick a piece of foam rubber out the window of your car while
driving down the freeway, the wind may compress it a little. Does it make
sense to interpret the relativistic length contraction as a type of strain
that pushes an object’s atoms together like this? How does this relate to
discussion question E?
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Proof that the Lorentz transformation preserves area

On page 82, I claimed that area must be preserved by Lorentz
transformations. Here is the proof of that fact.

First, consider a process, P, in which we start with a square of
unit area, and perform two successive Lorentz transformations, one
with v and one with −v. Let the first transformation scale the area
of the square by a factor R, which we want to prove equals 1. Since
the second transformation undoes the effect of the first one, its effect
is to scale the area of the intermediate parallelogram back down by
a factor of 1/R.

Now consider a slightly different process Q, involving the three
steps shown in the figure below: (1) perform a Lorentz transforma-
tion with velocity v; (2) chop the resulting parallelogram into little
squares; and (3) transform each square with a −v transformation.
We already know how a +v transformation acts on the area of a
square: it makes it into a parallelogram with an area that is greater
by a factor of R. In step 3, we are also acting on a square, but with
a −v transformation. Property 2 of spacetime on page 79 states
that all directions in space have the same properties, and therefore
a −v transformation acting on a square must have the same effect
on area as a +v transformation. (By property 1, homogeneity, it
doesn’t matter that these squares are located in different places.)
The result is that after completing process Q, we have scaled the
area by a factor of R2.

Comparing processes P and Q, we see that they must both re-
store the original square to itself. (In step 2 of process Q, there will
places near the edges of the parallelogram where we would only have
a fraction of a square, but the total area of this ragged edge region
can be made as small as desired by making the squares sufficiently
small.) Since P scales the area by 1, and Q scales the area by R2, we
conclude that R2 = 1. This means that either R = +1 or R = −1,
and R must be independent of v. But for v = 0 we have R = +1,
so R = +1 for all values of v.
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Summary
Selected vocabulary
center of mass . . the balance point of an object
velocity . . . . . . the rate of change of position; the slope of the

tangent line on an x− t graph.

Notation
x . . . . . . . . . . a point in space
t . . . . . . . . . . a point in time, a clock reading
∆ . . . . . . . . . “change in;” the value of a variable afterwards

minus its value before
∆x . . . . . . . . a distance, or more precisely a change in x,

which may be less than the distance traveled;
its plus or minus sign indicates direction

∆t . . . . . . . . . a duration of time
v . . . . . . . . . . velocity
vAB . . . . . . . . the velocity of object A relative to object B

Other terminology and notation
displacement . . a name for the symbol ∆x
speed . . . . . . . the absolute value of the velocity, i.e., the ve-

locity stripped of any information about its
direction

Summary

An object’s center of mass is the point at which it can be bal-
anced. For the time being, we are studying the mathematical de-
scription only of the motion of an object’s center of mass in cases
restricted to one dimension. The motion of an object’s center of
mass is usually far simpler than the motion of any of its other parts.

It is important to distinguish location, x, from distance, ∆x,
and clock reading, t, from time interval ∆t. When an object’s x− t
graph is linear, we define its velocity as the slope of the line, ∆x/∆t.
When the graph is curved, we generalize the definition so that the
velocity is the derivative dx/dt.

Galileo’s principle of inertia states that no force is required to
maintain motion with constant velocity in a straight line, and abso-
lute motion does not cause any observable physical effects. Things
typically tend to reduce their velocity relative to the surface of our
planet only because they are physically rubbing against the planet
(or something attached to the planet), not because there is anything
special about being at rest with respect to the earth’s surface. When
it seems, for instance, that a force is required to keep a book sliding
across a table, in fact the force is only serving to cancel the contrary
force of friction.

Absolute motion is not a well-defined concept, and if two ob-
servers are not at rest relative to one another they will disagree
about the absolute velocities of objects. They will, however, agree
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about relative velocities. If object A is in motion relative to object
B, and B is in motion relative to C, then A’s velocity relative to C
is given by vAC = vAB + vBC . Positive and negative signs are used
to indicate the direction of an object’s motion.

Modern experiments show that space and time only approxi-
mately have the properties claimed by Galileo and Newton. Time
and space as seen by one observer are distorted compared to another
observer’s perceptions if they are moving relative to each other. This
distortion is quantified by the factor

γ =
1√

1− v2

c2

,

where v is the relative velocity of the two observers, and c is a
universal velocity that is the same in all frames of reference. Light
travels at c. A clock appears to run fastest to an observer who is
not in motion relative to it, and appears to run too slowly by a
factor of γ to an observer who has a velocity v relative to the clock.
Similarly, a meter-stick appears longest to an observer who sees it
at rest, and appears shorter to other observers. Time and space are
relative, not absolute. In particular, there is no well-defined concept
of simultaneity. Velocities don’t add according to u + v but rather
(u+ v)/(1 + uv) (in units where c = 1).

All of these strange effects, however, are very small when the rel-
ative velocities are small compared to c. This makes sense, because
Newton’s laws have already been thoroughly tested by experiments
at such speeds, so a new theory like relativity must agree with the
old one in their realm of common applicability. This requirement of
backwards-compatibility is known as the correspondence principle.
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Problem 1.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The graph represents the motion of a ball that rolls up a hill
and then back down. When does the ball return to the location it
had at t = 0? . Solution, p. 510

2 The graph represents the velocity of a bee along a straight
line. At t = 0, the bee is at the hive. (a) When is the bee farthest
from the hive? (b) How far is the bee at its farthest point from the
hive? (c) At t = 13 s, how far is the bee from the hive?

√

3 (a) Let θ be the latitude of a point on the Earth’s surface.
Derive an algebra equation for the distance, L, traveled by that
point during one rotation of the Earth about its axis, i.e., over one
day, expressed in terms of θ and R, the radius of the earth. Check:
Your equation should give L = 0 for the North Pole.
(b) At what speed is Fullerton, at latitude θ = 34◦, moving with
the rotation of the Earth about its axis? Give your answer in units
of mi/h. [See the table in the back of the book for the relevant
data.]

√

4 A honeybee’s position as a function of time is given by x =
10t− t3, where t is in seconds and x in meters. What is its velocity
at t = 3.0 s?

√

5 Freddi Fish(TM) has a position as a function of time given by
x = a/(b + t2). (a) Infer the units of the constants a and b. (b)
Find her maximum speed. (c) Check that your answer has the right
units.

√

6 A metal square expands and contracts with temperature, the
lengths of its sides varying according to the equation ` = (1+αT )`o.
Infer the units of α. Find the rate of change of its surface area with
respect to temperature. That is, find dA/dT . Check that your
answer has the right units, as in example 4 on page 68.

√
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7 Let t be the time that has elapsed since the Big Bang. In
that time, one would imagine that light, traveling at speed c, has
been able to travel a maximum distance ct. (In fact the distance is
several times more than this, because according to Einstein’s theory
of general relativity, space itself has been expanding while the ray of
light was in transit.) The portion of the universe that we can observe
would then be a sphere of radius ct, with volume v = (4/3)πr3 =
(4/3)π(ct)3. Compute the rate dv/dt at which the volume of the
observable universe is increasing, and check that your answer has
the right units, as in example 4 on page 68.

√

8 (a) Express the chain rule in Leibniz notation, and show that
it always results in an answer whose units make sense.
(b) An object has a position as a function of time given by x =
A cos(bt), where A and b are constants. Infer the units of A and b,
and interpret their physical meanings.
(c) Find the velocity of this object, and check that the chain rule
has indeed given an answer with the right units.

. Solution, p. 511

9 (a) Translate the following information into symbols, using
the notation with two subscripts introduced in section 2.5. Eowyn
is riding on her horse at a velocity of 11 m/s. She twists around in
her saddle and fires an arrow backward. Her bow fires arrows at 25
m/s. (b) Find the velocity of the arrow relative to the ground.

10 Our full discussion of two- and three-dimensional motion is
postponed until the second half of the book, but here is a chance to
use a little mathematical creativity in anticipation of that general-
ization. Suppose a ship is sailing east at a certain speed v, and a
passenger is walking across the deck at the same speed v, so that
his track across the deck is perpendicular to the ship’s center-line.
What is his speed relative to the water, and in what direction is he
moving relative to the water? . Solution, p. 511

11 You’re standing in a freight train, and have no way to see out.
If you have to lean to stay on your feet, what, if anything, does that
tell you about the train’s velocity? Explain. . Solution, p. 511

12 Driving along in your car, you take your foot off the gas,
and your speedometer shows a reduction in speed. Describe a frame
of reference in which your car was speeding up during that same
period of time. (The frame of reference should be defined by an
observer who, although perhaps in motion relative to the earth, is
not changing her own speed or direction of motion.)

13 The figure shows the motion of a point on the rim of a rolling
wheel. (The shape is called a cycloid.) Suppose bug A is riding on
the rim of the wheel on a bicycle that is rolling, while bug B is on
the spinning wheel of a bike that is sitting upside down on the floor.
Bug A is moving along a cycloid, while bug B is moving in a circle.
Both wheels are doing the same number of revolutions per minute.
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Problem 13.

Problem 18.

Which bug has a harder time holding on, or do they find it equally
difficult? . Solution, p. 511

14 Astronauts in three different spaceships are communicating
with each other. Those aboard ships A and B agree on the rate at
which time is passing, but they disagree with the ones on ship C.
(a) Alice is aboard ship A. How does she describe the motion of her
own ship, in its frame of reference?
(b) Describe the motion of the other two ships according to Alice.
(c) Give the description according to Betty, whose frame of reference
is ship B.
(d) Do the same for Cathy, aboard ship C.

15 What happens in the equation for G when you put in a
negative number for v? Explain what this means physically, and
why it makes sense.

16 The Voyager 1 space probe, launched in 1977, is moving
faster relative to the earth than any other human-made object, at
17,000 meters per second.
(a) Calculate the probe’s G.
(b) Over the course of one year on earth, slightly less than one year
passes on the probe. How much less? (There are 31 million seconds
in a year.)

√

17 The earth is orbiting the sun, and therefore is contracted
relativistically in the direction of its motion. Compute the amount
by which its diameter shrinks in this direction.

√

18 In this homework problem, you’ll fill in the steps of the alge-
bra required in order to find the equation for G on page 82. To keep
the algebra simple, let the time t in figure al equal 1, as suggested
in the figure accompanying this homework problem. The original
square then has an area of 1, and the transformed parallelogram
must also have an area of 1. (a) Prove that point P is at x = vG, so
that its (t,x) coordinates are (G, vG). (b) Find the (t,x) coordinates
of point Q. (c) Find the length of the short diagonal connecting P
and Q. (d) Average the coordinates of P and Q to find the coordi-
nates of the midpoint C of the parallelogram, and then find distance
OC. (e) Find the area of the parallelogram by computing twice the
area of triangle PQO. [Hint: You can take PQ to be the base of
the triangle.] (f) Set this area equal to 1 and solve for G to prove
G = 1/

√
1− v2.

√

19 (a) Show that for v = (3/5)c, γ comes out to be a simple
fraction.
(b) Find another value of v for which γ is a simple fraction.

20 In the equation for the relativistic addition of velocities u
and v, consider the limit in which u approaches 1, but v simulta-
neously approaches −1. Give both a physical and a mathematical
interpretation.
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21 The figure illustrates a Lorentz transformation using the
conventions employed in section 2.6.2. For simplicity, the transfor-
mation chosen is one that lengthens one diagonal by a factor of 2.
Since Lorentz transformations preserve area, the other diagonal is
shortened by a factor of 2. Let the original frame of reference, de-
picted with the square, be A, and the new one B. (a) By measuring
with a ruler on the figure, show that the velocity of frame B rela-
tive to frame A is 0.6c. (b) Print out a copy of the page. With a
ruler, draw a third parallelogram that represents a second succes-
sive Lorentz transformation, one that lengthens the long diagonal
by another factor of 2. Call this third frame C. Use measurements
with a ruler to determine frame C’s velocity relative to frame A.
Does it equal double the velocity found in part a? Explain why it
should be expected to turn out the way it does. A general equation
for this type of calculation is derived in problem 22.

√
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22 The purpose of this problem is to prove the general re-
sult w = (u + v)/(1 + uv) (in units where c = 1) for the kind of
combination of velocities found graphically in problem 21. Suppose
that we perform two Lorentz transformations, with velocities u and
v, one after the other. Representing these transformations as dis-
tortions of parallelograms, we stretch the stretching diagonals by
factors S(u) and S(v) (and compress the compressing ones by the
inverses of these factors), so that the combined result is a stretching
by S(u)S(v). We want to prove that S(w) = S(u)S(v) gives the ex-
pression claimed above for w. One can easily show by fiddling with
the result of part c of problem 18 that S(x) =

√
(1 + x)/(1− x).

(a) Use these facts to write down an equation relating u, v, and w.
(b) Solve for w in terms of u and v. (c) Show that your answer
to part b satisfies the correspondence principle. (d) Show that it is
consistent with the constancy of c.

23 Sometimes doors are built with mechanisms that automat-
ically close them after they have been opened. The designer can
set both the strength of the spring and the amount of friction. If
there is too much friction in relation to the strength of the spring,
the door takes too long to close, but if there is too little, the door
will oscillate. For an optimal design, we get motion like x = cte−bt,
where x is the position of some point on the door, and c and b are
positive constants. (Similar systems are used for other mechanical
devices, such as stereo speakers and the recoil mechanisms of guns.)
(a) Infer the units of the constants b and c.
(b) Find the door’s maximum speed (i.e., the greatest absolute value
of its velocity) for t > 0.

√

(c) Show that your answer has units that make sense.
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Galileo’s contradiction of Aristotle had serious consequences. He was
interrogated by the Church authorities and convicted of teaching that the
earth went around the sun as a matter of fact and not, as he had promised
previously, as a mere mathematical hypothesis. He was placed under per-
manent house arrest, and forbidden to write about or teach his theories.
Immediately after being forced to recant his claim that the earth revolved
around the sun, the old man is said to have muttered defiantly “and yet
it does move.” The story is dramatic, but there are some omissions in
the commonly taught heroic version. There was a rumor that the Sim-
plicio character represented the Pope. Also, some of the ideas Galileo
advocated had controversial religious overtones. He believed in the exis-
tence of atoms, and atomism was thought by some people to contradict
the Church’s doctrine of transubstantiation, which said that in the Catholic
mass, the blessing of the bread and wine literally transformed them into
the flesh and blood of Christ. His support for a cosmology in which the
earth circled the sun was also disreputable because one of its support-
ers, Giordano Bruno, had also proposed a bizarre synthesis of Christianity
with the ancient Egyptian religion.

Chapter 3

Acceleration and free fall

3.1 The motion of falling objects
The motion of falling objects is the simplest and most common
example of motion with changing velocity. The early pioneers of
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a / Galileo dropped a cannonball
and a musketball simultaneously
from a tower, and observed that
they hit the ground at nearly the
same time. This contradicted
Aristotle’s long-accepted idea
that heavier objects fell faster.

physics had a correct intuition that the way things drop was a mes-
sage directly from Nature herself about how the universe worked.
Other examples seem less likely to have deep significance. A walking
person who speeds up is making a conscious choice. If one stretch of
a river flows more rapidly than another, it may be only because the
channel is narrower there, which is just an accident of the local ge-
ography. But there is something impressively consistent, universal,
and inexorable about the way things fall.

Stand up now and simultaneously drop a coin and a bit of paper
side by side. The paper takes much longer to hit the ground. That’s
why Aristotle wrote that heavy objects fell more rapidly. Europeans
believed him for two thousand years.

Now repeat the experiment, but make it into a race between the
coin and your shoe. My own shoe is about 50 times heavier than
the nickel I had handy, but it looks to me like they hit the ground at
exactly the same moment. So much for Aristotle! Galileo, who had
a flair for the theatrical, did the experiment by dropping a bullet
and a heavy cannonball from a tall tower. Aristotle’s observations
had been incomplete, his interpretation a vast oversimplification.

It is inconceivable that Galileo was the first person to observe a
discrepancy with Aristotle’s predictions. Galileo was the one who
changed the course of history because he was able to assemble the
observations into a coherent pattern, and also because he carried
out systematic quantitative (numerical) measurements rather than
just describing things qualitatively.

Why is it that some objects, like the coin and the shoe, have sim-
ilar motion, but others, like a feather or a bit of paper, are different?
Galileo speculated that in addition to the force that always pulls ob-
jects down, there was an upward force exerted by the air. Anyone
can speculate, but Galileo went beyond speculation and came up
with two clever experiments to probe the issue. First, he experi-
mented with objects falling in water, which probed the same issues
but made the motion slow enough that he could take time measure-
ments with a primitive pendulum clock. With this technique, he
established the following facts:

• All heavy, streamlined objects (for example a steel rod dropped
point-down) reach the bottom of the tank in about the same
amount of time, only slightly longer than the time they would
take to fall the same distance in air.

• Objects that are lighter or less streamlined take a longer time
to reach the bottom.

This supported his hypothesis about two contrary forces. He
imagined an idealized situation in which the falling object did not
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c / The v − t graph of a falling
object is a line.

have to push its way through any substance at all. Falling in air
would be more like this ideal case than falling in water, but even
a thin, sparse medium like air would be sufficient to cause obvious
effects on feathers and other light objects that were not streamlined.
Today, we have vacuum pumps that allow us to suck nearly all the
air out of a chamber, and if we drop a feather and a rock side by
side in a vacuum, the feather does not lag behind the rock at all.

How the speed of a falling object increases with time

Galileo’s second stroke of genius was to find a way to make quan-
titative measurements of how the speed of a falling object increased
as it went along. Again it was problematic to make sufficiently accu-
rate time measurements with primitive clocks, and again he found a
tricky way to slow things down while preserving the essential physi-
cal phenomena: he let a ball roll down a slope instead of dropping it
vertically. The steeper the incline, the more rapidly the ball would
gain speed. Without a modern video camera, Galileo had invented
a way to make a slow-motion version of falling.

b / Velocity increases more gradually on the gentle slope, but the
motion is otherwise the same as the motion of a falling object.

Although Galileo’s clocks were only good enough to do accurate
experiments at the smaller angles, he was confident after making
a systematic study at a variety of small angles that his basic con-
clusions were generally valid. Stated in modern language, what he
found was that the velocity-versus-time graph was a line. In the lan-
guage of algebra, we know that a line has an equation of the form
y = ax+ b, but our variables are v and t, so it would be v = at+ b.
(The constant b can be interpreted simply as the initial velocity of
the object, i.e., its velocity at the time when we started our clock,
which we conventionally write as vo.)

self-check A
An object is rolling down an incline. After it has been rolling for a short
time, it is found to travel 13 cm during a certain one-second interval.
During the second after that, if goes 16 cm. How many cm will it travel
in the second after that? . Answer, p. 524
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d / Galileo’s experiments show
that all falling objects have the
same motion if air resistance is
negligible.

e / 1. Aristotle said that heavier
objects fell faster than lighter
ones. 2. If two rocks are tied
together, that makes an extra-
heavy rock, which should fall
faster. 3. But Aristotle’s theory
would also predict that the light
rock would hold back the heavy
rock, resulting in a slower fall.

A contradiction in Aristotle’s reasoning

Galileo’s inclined-plane experiment disproved the long-accepted
claim by Aristotle that a falling object had a definite “natural falling
speed” proportional to its weight. Galileo had found that the speed
just kept on increasing, and weight was irrelevant as long as air
friction was negligible. Not only did Galileo prove experimentally
that Aristotle had been wrong, but he also pointed out a logical
contradiction in Aristotle’s own reasoning. Simplicio, the stupid
character, mouths the accepted Aristotelian wisdom:

SIMPLICIO: There can be no doubt but that a particular body
. . . has a fixed velocity which is determined by nature. . .

SALVIATI: If then we take two bodies whose natural speeds
are different, it is clear that, [according to Aristotle], on unit-
ing the two, the more rapid one will be partly held back by
the slower, and the slower will be somewhat hastened by the
swifter. Do you not agree with me in this opinion?

SIMPLICIO: You are unquestionably right.

SALVIATI: But if this is true, and if a large stone moves with a
speed of, say, eight [unspecified units] while a smaller moves
with a speed of four, then when they are united, the system
will move with a speed less than eight; but the two stones
when tied together make a stone larger than that which before
moved with a speed of eight. Hence the heavier body moves
with less speed than the lighter; an effect which is contrary to
your supposition. Thus you see how, from your assumption
that the heavier body moves more rapidly than the lighter one,
I infer that the heavier body moves more slowly.

What is gravity?

The physicist Richard Feynman liked to tell a story about how
when he was a little kid, he asked his father, “Why do things fall?”
As an adult, he praised his father for answering, “Nobody knows why
things fall. It’s a deep mystery, and the smartest people in the world
don’t know the basic reason for it.” Contrast that with the average
person’s off-the-cuff answer, “Oh, it’s because of gravity.” Feynman
liked his father’s answer, because his father realized that simply
giving a name to something didn’t mean that you understood it.
The radical thing about Galileo’s and Newton’s approach to science
was that they concentrated first on describing mathematically what
really did happen, rather than spending a lot of time on untestable
speculation such as Aristotle’s statement that “Things fall because
they are trying to reach their natural place in contact with the
earth.” That doesn’t mean that science can never answer the “why”
questions. Over the next month or two as you delve deeper into
physics, you will learn that there are more fundamental reasons why
all falling objects have v − t graphs with the same slope, regardless
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f / Example 1.

g / Example 2.

of their mass. Nevertheless, the methods of science always impose
limits on how deep our explanation can go.

3.2 Acceleration
Definition of acceleration for linear v − t graphs

Galileo’s experiment with dropping heavy and light objects from
a tower showed that all falling objects have the same motion, and his
inclined-plane experiments showed that the motion was described by
v = at+vo. The initial velocity vo depends on whether you drop the
object from rest or throw it down, but even if you throw it down,
you cannot change the slope, a, of the v − t graph.

Since these experiments show that all falling objects have lin-
ear v − t graphs with the same slope, the slope of such a graph is
apparently an important and useful quantity. We use the word accel-
eration, and the symbol a, for the slope of such a graph. In symbols,
a = ∆v/∆t. The acceleration can be interpreted as the amount of
speed gained in every second, and it has units of velocity divided by
time, i.e., “meters per second per second,” or m/s/s. Continuing to
treat units as if they were algebra symbols, we simplify “m/s/s” to
read “m/s2.” Acceleration can be a useful quantity for describing
other types of motion besides falling, and the word and the symbol
“a” can be used in a more general context. We reserve the more
specialized symbol “g” for the acceleration of falling objects, which
on the surface of our planet equals 9.8 m/s2. Often when doing
approximate calculations or merely illustrative numerical examples
it is good enough to use g = 10 m/s2, which is off by only 2%.

Finding final speed, given time example 1
. A despondent physics student jumps off a bridge, and falls for
three seconds before hitting the water. How fast is he going when
he hits the water?

. Approximating g as 10 m/s2, he will gain 10 m/s of speed each
second. After one second, his velocity is 10 m/s, after two sec-
onds it is 20 m/s, and on impact, after falling for three seconds,
he is moving at 30 m/s.

Extracting acceleration from a graph example 2
. The x − t and v − t graphs show the motion of a car starting
from a stop sign. What is the car’s acceleration?

. Acceleration is defined as the slope of the v-t graph. The graph
rises by 3 m/s during a time interval of 3 s, so the acceleration is
(3 m/s)/(3 s) = 1 m/s2.

Incorrect solution #1: The final velocity is 3 m/s, and acceleration
is velocity divided by time, so the acceleration is (3 m/s)/(10 s) =
0.3 m/s2.
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The solution is incorrect because you can’t find the slope of a
graph from one point. This person was just using the point at the
right end of the v-t graph to try to find the slope of the curve.

Incorrect solution #2: Velocity is distance divided by time so v =
(4.5 m)/(3 s) = 1.5 m/s. Acceleration is velocity divided by time,
so a = (1.5 m/s)/(3 s) = 0.5 m/s2.

The solution is incorrect because velocity is the slope of the
tangent line. In a case like this where the velocity is changing,
you can’t just pick two points on the x-t graph and use them to
find the velocity.

Converting g to different units example 3
. What is g in units of cm/s2?

. The answer is going to be how many cm/s of speed a falling
object gains in one second. If it gains 9.8 m/s in one second, then
it gains 980 cm/s in one second, so g = 980 cm/s2. Alternatively,
we can use the method of fractions that equal one:

9.8��m
s2 × 100 cm

1��m
=

980 cm
s2

. What is g in units of miles/hour2?

.

9.8 m
s2 × 1 mile

1600 m
×
(

3600 s
1 hour

)2

= 7.9× 104 mile/hour2

This large number can be interpreted as the speed, in miles per
hour, that you would gain by falling for one hour. Note that we had
to square the conversion factor of 3600 s/hour in order to cancel
out the units of seconds squared in the denominator.

. What is g in units of miles/hour/s?

.

9.8 m
s2 × 1 mile

1600 m
× 3600 s

1 hour
= 22 mile/hour/s

This is a figure that Americans will have an intuitive feel for. If
your car has a forward acceleration equal to the acceleration of a
falling object, then you will gain 22 miles per hour of speed every
second. However, using mixed time units of hours and seconds
like this is usually inconvenient for problem-solving. It would be
like using units of foot-inches for area instead of ft2 or in2.

The acceleration of gravity is different in different locations.

Everyone knows that gravity is weaker on the moon, but actu-
ally it is not even the same everywhere on Earth, as shown by the
sampling of numerical data in the following table.
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location latitude elevation (m) g (m/s2)
north pole 90◦N 0 9.8322
Reykjavik, Iceland 64◦N 0 9.8225
Guayaquil, Ecuador 2◦S 0 9.7806
Mt. Cotopaxi, Ecuador 1◦S 5896 9.7624
Mt. Everest 28◦N 8848 9.7643

The main variables that relate to the value of g on Earth are latitude
and elevation. Although you have not yet learned how g would
be calculated based on any deeper theory of gravity, it is not too
hard to guess why g depends on elevation. Gravity is an attraction
between things that have mass, and the attraction gets weaker with
increasing distance. As you ascend from the seaport of Guayaquil
to the nearby top of Mt. Cotopaxi, you are distancing yourself from
the mass of the planet. The dependence on latitude occurs because
we are measuring the acceleration of gravity relative to the earth’s
surface, but the earth’s rotation causes the earth’s surface to fall
out from under you. (We will discuss both gravity and rotation in
more detail later in the course.)

h / This false-color map shows
variations in the strength of the
earth’s gravity. Purple areas have
the strongest gravity, yellow the
weakest. The overall trend toward
weaker gravity at the equator and
stronger gravity at the poles has
been artificially removed to al-
low the weaker local variations to
show up. The map covers only
the oceans because of the tech-
nique used to make it: satellites
look for bulges and depressions
in the surface of the ocean. A
very slight bulge will occur over an
undersea mountain, for instance,
because the mountain’s gravita-
tional attraction pulls water to-
ward it. The US government orig-
inally began collecting data like
these for military use, to correct
for the deviations in the paths of
missiles. The data have recently
been released for scientific and
commercial use (e.g., searching
for sites for off-shore oil wells).

Much more spectacular differences in the strength of gravity can
be observed away from the Earth’s surface:
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location g (m/s2)
asteroid Vesta (surface) 0.3
Earth’s moon (surface) 1.6
Mars (surface) 3.7
Earth (surface) 9.8
Jupiter (cloud-tops) 26
Sun (visible surface) 270
typical neutron star (surface) 1012

black hole (center) infinite according to some theo-
ries, on the order of 1052 accord-
ing to others

A typical neutron star is not so different in size from a large asteroid,
but is orders of magnitude more massive, so the mass of a body
definitely correlates with the g it creates. On the other hand, a
neutron star has about the same mass as our Sun, so why is its g
billions of times greater? If you had the misfortune of being on the
surface of a neutron star, you’d be within a few thousand miles of all
its mass, whereas on the surface of the Sun, you’d still be millions
of miles from most of its mass.

Discussion questions

A What is wrong with the following definitions of g?

(1) “g is gravity.”

(2) “g is the speed of a falling object.”

(3) “g is how hard gravity pulls on things.”

B When advertisers specify how much acceleration a car is capable
of, they do not give an acceleration as defined in physics. Instead, they
usually specify how many seconds are required for the car to go from rest
to 60 miles/hour. Suppose we use the notation “a” for the acceleration as
defined in physics, and “acar ad” for the quantity used in advertisements for
cars. In the US’s non-metric system of units, what would be the units of
a and acar ad? How would the use and interpretation of large and small,
positive and negative values be different for a as opposed to acar ad?

C Two people stand on the edge of a cliff. As they lean over the edge,
one person throws a rock down, while the other throws one straight up
with an exactly opposite initial velocity. Compare the speeds of the rocks
on impact at the bottom of the cliff.

3.3 Positive and negative acceleration
Gravity always pulls down, but that does not mean it always speeds
things up. If you throw a ball straight up, gravity will first slow
it down to v = 0 and then begin increasing its speed. When I
took physics in high school, I got the impression that positive signs
of acceleration indicated speeding up, while negative accelerations
represented slowing down, i.e., deceleration. Such a definition would
be inconvenient, however, because we would then have to say that
the same downward tug of gravity could produce either a positive
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i / The ball’s acceleration stays
the same — on the way up, at the
top, and on the way back down.
It’s always negative.

or a negative acceleration. As we will see in the following example,
such a definition also would not be the same as the slope of the v− t
graph

Let’s study the example of the rising and falling ball. In the ex-
ample of the person falling from a bridge, I assumed positive velocity
values without calling attention to it, which meant I was assuming
a coordinate system whose x axis pointed down. In this example,
where the ball is reversing direction, it is not possible to avoid neg-
ative velocities by a tricky choice of axis, so let’s make the more
natural choice of an axis pointing up. The ball’s velocity will ini-
tially be a positive number, because it is heading up, in the same
direction as the x axis, but on the way back down, it will be a neg-
ative number. As shown in the figure, the v − t graph does not do
anything special at the top of the ball’s flight, where v equals 0. Its
slope is always negative. In the left half of the graph, there is a
negative slope because the positive velocity is getting closer to zero.
On the right side, the negative slope is due to a negative velocity
that is getting farther from zero, so we say that the ball is speeding
up, but its velocity is decreasing!

To summarize, what makes the most sense is to stick with the
original definition of acceleration as the slope of the v − t graph,
∆v/∆t. By this definition, it just isn’t necessarily true that things
speeding up have positive acceleration while things slowing down
have negative acceleration. The word “deceleration” is not used
much by physicists, and the word “acceleration” is used unblush-
ingly to refer to slowing down as well as speeding up: “There was a
red light, and we accelerated to a stop.”

Numerical calculation of a negative acceleration example 4
. In figure i, what happens if you calculate the acceleration be-
tween t = 1.0 and 1.5 s?

. Reading from the graph, it looks like the velocity is about−1 m/s
at t = 1.0 s, and around −6 m/s at t = 1.5 s. The acceleration,
figured between these two points, is

a =
∆v
∆t

=
(−6 m/s)− (−1 m/s)

(1.5 s)− (1.0 s)
= −10 m/s2 .

Even though the ball is speeding up, it has a negative accelera-
tion.

Another way of convincing you that this way of handling the plus
and minus signs makes sense is to think of a device that measures
acceleration. After all, physics is supposed to use operational defini-
tions, ones that relate to the results you get with actual measuring
devices. Consider an air freshener hanging from the rear-view mirror
of your car. When you speed up, the air freshener swings backward.
Suppose we define this as a positive reading. When you slow down,
the air freshener swings forward, so we’ll call this a negative reading
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on our accelerometer. But what if you put the car in reverse and
start speeding up backwards? Even though you’re speeding up, the
accelerometer responds in the same way as it did when you were
going forward and slowing down. There are four possible cases:

motion of car accelerometer
swings

slope of
v-t graph

direction
of force
acting on
car

forward, speeding up backward + forward
forward, slowing down forward − backward
backward, speeding up forward − backward
backward, slowing down backward + forward

Note the consistency of the three right-hand columns — nature is
trying to tell us that this is the right system of classification, not
the left-hand column.

Because the positive and negative signs of acceleration depend
on the choice of a coordinate system, the acceleration of an object
under the influence of gravity can be either positive or negative.
Rather than having to write things like “g = 9.8 m/s2 or −9.8 m/s2”
every time we want to discuss g’s numerical value, we simply define
g as the absolute value of the acceleration of objects moving under
the influence of gravity. We consistently let g = 9.8 m/s2, but we
may have either a = g or a = −g, depending on our choice of a
coordinate system.

Acceleration with a change in direction of motion example 5
. A person kicks a ball, which rolls up a sloping street, comes to
a halt, and rolls back down again. The ball has constant accel-
eration. The ball is initially moving at a velocity of 4.0 m/s, and
after 10.0 s it has returned to where it started. At the end, it has
sped back up to the same speed it had initially, but in the opposite
direction. What was its acceleration?

. By giving a positive number for the initial velocity, the statement
of the question implies a coordinate axis that points up the slope
of the hill. The “same” speed in the opposite direction should
therefore be represented by a negative number, -4.0 m/s. The
acceleration is

a = ∆v/∆t
= (vf − vo)/10.0 s
= [(−4.0 m/s)− (4.0 m/s)]/10.0s

= −0.80 m/s2 .

The acceleration was no different during the upward part of the
roll than on the downward part of the roll.

Incorrect solution: Acceleration is ∆v/∆t, and at the end it’s not
moving any faster or slower than when it started, so ∆v=0 and
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Discussion question C.

a = 0.

The velocity does change, from a positive number to a negative
number.

Discussion question B.

Discussion questions

A A child repeatedly jumps up and down on a trampoline. Discuss the
sign and magnitude of his acceleration, including both the time when he is
in the air and the time when his feet are in contact with the trampoline.

B The figure shows a refugee from a Picasso painting blowing on a
rolling water bottle. In some cases the person’s blowing is speeding the
bottle up, but in others it is slowing it down. The arrow inside the bottle
shows which direction it is going, and a coordinate system is shown at the
bottom of each figure. In each case, figure out the plus or minus signs of
the velocity and acceleration. It may be helpful to draw a v − t graph in
each case.

C Sally is on an amusement park ride which begins with her chair being
hoisted straight up a tower at a constant speed of 60 miles/hour. Despite
stern warnings from her father that he’ll take her home the next time she
misbehaves, she decides that as a scientific experiment she really needs
to release her corndog over the side as she’s on the way up. She does
not throw it. She simply sticks it out of the car, lets it go, and watches it
against the background of the sky, with no trees or buildings as reference
points. What does the corndog’s motion look like as observed by Sally?
Does its speed ever appear to her to be zero? What acceleration does
she observe it to have: is it ever positive? negative? zero? What would
her enraged father answer if asked for a similar description of its motion
as it appears to him, standing on the ground?

D Can an object maintain a constant acceleration, but meanwhile
reverse the direction of its velocity?

E Can an object have a velocity that is positive and increasing at the
same time that its acceleration is decreasing?
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3.4 Varying acceleration
So far we have only been discussing examples of motion for which
the acceleration is constant. As always, an expression of the form
∆ . . . /∆ . . . for a rate of change must be generalized to a derivative
when the rate of change isn’t constant. We therefore define the ac-
celeration as a = dv/dt, which is the same as the second derivative,
which Leibniz notated as

a =
d2x

dt2
.

The seemingly inconsistent placement of the twos on the top and
bottom confuses all beginning calculus students. The motivation
for this funny notation is that acceleration has units of m/s2, and
the notation correctly suggests that: the top looks like it has units of
meters, the bottom seconds2. The notation is not meant, however,
to suggest that t is really squared.

3.5 Algebraic results for constant acceleration
When an object is accelerating, the variables x, v, and t are all
changing continuously. It is often of interest to eliminate one of
these and relate the other two to each other.

Constant acceleration example 6
. How high does a diving board have to be above the water if the
diver is to have as much as 1.0 s in the air?

. The diver starts at rest, and has an acceleration of 9.8 m/s2.
We need to find a connection between the distance she travels
and time it takes. In other words, we’re looking for information
about the function x(t), given information about the acceleration.
To go from acceleration to position, we need to integrate twice:

x =
∫ ∫

a dt dt

=
∫

(at + vo) dt [vo is a constant of integration.]

=
∫

at dt [vo is zero because she’s dropping from rest.]

=
1
2

at2 + xo [xo is a constant of integration.]

=
1
2

at2 [xo can be zero if we define it that way.]

Note some of the good problem-solving habits demonstrated here.
We solve the problem symbolically, and only plug in numbers at
the very end, once all the algebra and calculus are done. One
should also make a habit, after finding a symbolic result, of check-
ing whether the dependence on the variables make sense. A
greater value of t in this expression would lead to a greater value
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for x ; that makes sense, because if you want more time in the
air, you’re going to have to jump from higher up. A greater ac-
celeration also leads to a greater height; this also makes sense,
because the stronger gravity is, the more height you’ll need in or-
der to stay in the air for a given amount of time. Now we plug in
numbers.

x =
1
2

(
9.8 m/s2

)
(1.0 s)2

= 4.9 m

Note that when we put in the numbers, we check that the units
work out correctly,

(
m/s2) (s)2 = m. We should also check that

the result makes sense: 4.9 meters is pretty high, but not unrea-
sonable.

Under conditions of constant acceleration, we can relate velocity
and time,

a =
∆v

∆t
,

or, as in the example 6, position and time,

x =
1

2
at2 + vot+ xo .

It can also be handy to have a relation involving velocity and posi-
tion, eliminating time. Straightforward algebra gives

v2
f = v2

o + 2a∆x ,

where vf is the final velocity, vo the initial velocity, and ∆x the
distance traveled.

. Solved problem: Dropping a rock on Mars page 112, problem 13

. Solved problem: The Dodge Viper page 112, problem 11
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Summary
Selected vocabulary
gravity . . . . . . A general term for the phenomenon of attrac-

tion between things having mass. The attrac-
tion between our planet and a human-sized ob-
ject causes the object to fall.

acceleration . . . The rate of change of velocity; the slope of the
tangent line on a v − t graph.

Notation
vo . . . . . . . . . initial velocity
vf . . . . . . . . . final velocity
a . . . . . . . . . . acceleration
g . . . . . . . . . . the acceleration of objects in free fall; the

strength of the local gravitational field

Summary

Galileo showed that when air resistance is negligible all falling
bodies have the same motion regardless of mass. Moreover, their
v− t graphs are straight lines. We therefore define a quantity called
acceleration as the derivative dv/dt. This definition has the advan-
tage that a force with a given sign, representing its direction, always
produces an acceleration with the same sign. The acceleration of ob-
jects in free fall varies slightly across the surface of the earth, and
greatly on other planets.

For motion with constant acceleration, the following three equa-
tions hold:

∆x = vo∆t+
1

2
a∆t2

v2
f = v2

o + 2a∆x

a =
∆v

∆t

They are not valid if the acceleration is changing.
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Problem 6.

Problem 7.

Problem 9.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 On New Year’s Eve, a stupid person fires a pistol straight up.
The bullet leaves the gun at a speed of 100 m/s. How long does it
take before the bullet hits the ground? . Solution, p. 511

2 What is the acceleration of a car that moves at a steady
velocity of 100 km/h for 100 seconds? Explain your answer. [Based
on a problem by Hewitt.]

3 You are looking into a deep well. It is dark, and you cannot
see the bottom. You want to find out how deep it is, so you drop
a rock in, and you hear a splash 3.0 seconds later. How deep is the
well?

√

4 A honeybee’s position as a function of time is given by x =
10t− t3, where t is in seconds and x in meters. What is its acceler-
ation at t = 3.0 s? . Solution, p. 511

5 Alice drops a rock off a cliff. Bubba shoots a gun straight
down from the edge of the same cliff. Compare the accelerations of
the rock and the bullet while they are in the air on the way down.
[Based on a problem by Serway and Faughn.]

6 The top part of the figure shows the position-versus-time graph
for an object moving in one dimension. On the bottom part of the
figure, sketch the corresponding v-versus-t graph.

. Solution, p. 512

7 (a) The ball is released at the top of the ramp shown in the
figure. Friction is negligible. Use physical reasoning to draw v − t
and a− t graphs. Assume that the ball doesn’t bounce at the point
where the ramp changes slope. (b) Do the same for the case where
the ball is rolled up the slope from the right side, but doesn’t quite
have enough speed to make it over the top. . Solution, p. 512

8 You throw a rubber ball up, and it falls and bounces sev-
eral times. Draw graphs of position, velocity, and acceleration as
functions of time. . Solution, p. 512

9 A ball rolls down the ramp shown in the figure, consisting of a
curved knee, a straight slope, and a curved bottom. For each part of
the ramp, tell whether the ball’s velocity is increasing, decreasing,
or constant, and also whether the ball’s acceleration is increasing,
decreasing, or constant. Explain your answers. Assume there is no
air friction or rolling resistance.
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Problem 12.

10 Consider the following passage from Alice in Wonderland, in
which Alice has been falling for a long time down a rabbit hole:

Down, down, down. Would the fall never come to an end? “I
wonder how many miles I’ve fallen by this time?” she said aloud.
“I must be getting somewhere near the center of the earth. Let me
see: that would be four thousand miles down, I think” (for, you see,
Alice had learned several things of this sort in her lessons in the
schoolroom, and though this was not a very good opportunity for
showing off her knowledge, as there was no one to listen to her, still
it was good practice to say it over)...

Alice doesn’t know much physics, but let’s try to calculate the
amount of time it would take to fall four thousand miles, starting
from rest with an acceleration of 10 m/s2. This is really only a lower
limit; if there really was a hole that deep, the fall would actually
take a longer time than the one you calculate, both because there
is air friction and because gravity gets weaker as you get deeper (at
the center of the earth, g is zero, because the earth is pulling you
equally in every direction at once).

√

11 In July 1999, Popular Mechanics carried out tests to find
which car sold by a major auto maker could cover a quarter mile
(402 meters) in the shortest time, starting from rest. Because the
distance is so short, this type of test is designed mainly to favor the
car with the greatest acceleration, not the greatest maximum speed
(which is irrelevant to the average person). The winner was the
Dodge Viper, with a time of 12.08 s. The car’s top (and presumably
final) speed was 118.51 miles per hour (52.98 m/s). (a) If a car,
starting from rest and moving with constant acceleration, covers
a quarter mile in this time interval, what is its acceleration? (b)
What would be the final speed of a car that covered a quarter mile
with the constant acceleration you found in part a? (c) Based on
the discrepancy between your answer in part b and the actual final
speed of the Viper, what do you conclude about how its acceleration
changed over time? . Solution, p. 513

12 The photo shows Apollo 16 astronaut John Young jumping
on the moon and saluting at the top of his jump. The video footage
of the jump shows him staying aloft for 1.45 seconds. Gravity on
the moon is 1/6 as strong as on the earth. Compute the height of
the jump.

√

13 If the acceleration of gravity on Mars is 1/3 that on Earth,
how many times longer does it take for a rock to drop the same
distance on Mars? Ignore air resistance. . Solution, p. 513

14 You climb half-way up a tree, and drop a rock. Then you
climb to the top, and drop another rock. How many times greater
is the velocity of the second rock on impact? Explain. (The answer
is not two times greater.)
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Problem 21.

15 Starting from rest, a ball rolls down a ramp, traveling a
distance L and picking up a final speed v. How much of the distance
did the ball have to cover before achieving a speed of v/2? [Based
on a problem by Arnold Arons.] . Solution, p. 513

16 A toy car is released on one side of a piece of track that is
bent into an upright U shape. The car goes back and forth. When
the car reaches the limit of its motion on one side, its velocity is
zero. Is its acceleration also zero? Explain using a v − t graph.
[Based on a problem by Serway and Faughn.]

17 A physics homework question asks, “If you start from rest
and accelerate at 1.54 m/s2 for 3.29 s, how far do you travel by the
end of that time?” A student answers as follows:

1.54× 3.29 = 5.07 m

His Aunt Wanda is good with numbers, but has never taken physics.
She doesn’t know the formula for the distance traveled under con-
stant acceleration over a given amount of time, but she tells her
nephew his answer cannot be right. How does she know?

18 Find the error in the following calculation. A student wants
to find the distance traveled by a car that accelerates from rest for
5.0 s with an acceleration of 2.0 m/s2. First he solves a = ∆v/∆t for
∆v = 10 m/s. Then he multiplies to find (10 m/s)(5.0 s) = 50 m.
Do not just recalculate the result by a different method; if that was
all you did, you’d have no way of knowing which calculation was
correct, yours or his.

19 Acceleration could be defined either as ∆v/∆t or as the slope
of the tangent line on the v − t graph. Is either one superior as a
definition, or are they equivalent? If you say one is better, give an
example of a situation where it makes a difference which one you
use.

20 If an object starts accelerating from rest, we have v2 =
2a∆x for its speed after it has traveled a distance ∆x. Explain in
words why it makes sense that the equation has velocity squared, but
distance only to the first power. Don’t recapitulate the derivation
in the book, or give a justification based on units. The point is
to explain what this feature of the equation tells us about the way
speed increases as more distance is covered.

21 The graph shows the acceleration of a chipmunk in a TV
cartoon. It consists of two circular arcs and two line segments.
At t = 0.00 s, the chipmunk’s velocity is −3.10 m/s. What is its
velocity at t = 10.00 s?

√
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22 You take a trip in your spaceship to another star. Setting off,
you increase your speed at a constant acceleration. Once you get
half-way there, you start decelerating, at the same rate, so that by
the time you get there, you have slowed down to zero speed. You see
the tourist attractions, and then head home by the same method.
(a) Find a formula for the time, T , required for the round trip, in
terms of d, the distance from our sun to the star, and a, the magni-
tude of the acceleration. Note that the acceleration is not constant
over the whole trip, but the trip can be broken up into constant-
acceleration parts.
(b) The nearest star to the Earth (other than our own sun) is Prox-
ima Centauri, at a distance of d = 4× 1016 m. Suppose you use an
acceleration of a = 10 m/s2, just enough to compensate for the lack
of true gravity and make you feel comfortable. How long does the
round trip take, in years?
(c) Using the same numbers for d and a, find your maximum speed.
Compare this to the speed of light, which is 3.0× 108 m/s. (Later
in this course, you will learn that there are some new things going
on in physics when one gets close to the speed of light, and that it
is impossible to exceed the speed of light. For now, though, just use
the simpler ideas you’ve learned so far.)

√
?

Problem 23. This spectacular series of photos from a 2011 paper by Bur-
rows and Sutton (“Biomechanics of jumping in the flea,” J. Exp. Biology
214:836) shows the flea jumping at about a 45-degree angle, but for the
sake of this estimate just consider the case of a flea jumping vertically.

23 Some fleas can jump as high as 30 cm. The flea only has a
short time to build up speed — the time during which its center of
mass is accelerating upward but its feet are still in contact with the
ground. Make an order-of-magnitude estimate of the acceleration
the flea needs to have while straightening its legs, and state your
answer in units of g, i.e., how many “g’s it pulls.” (For comparison,
fighter pilots black out or die if they exceed about 5 or 10 g’s.)
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24 The speed required for a low-earth orbit is 7.9×103 m/s (see
ch. 10). When a rocket is launched into orbit, it goes up a little at
first to get above almost all of the atmosphere, but then tips over
horizontally to build up to orbital speed. Suppose the horizontal
acceleration is limited to 3g to keep from damaging the cargo (or
hurting the crew, for a crewed flight). (a) What is the minimum
distance the rocket must travel downrange before it reaches orbital
speed? How much does it matter whether you take into account the
initial eastward velocity due to the rotation of the earth? (b) Rather
than a rocket ship, it might be advantageous to use a railgun design,
in which the craft would be accelerated to orbital speeds along a
railroad track. This has the advantage that it isn’t necessary to lift
a large mass of fuel, since the energy source is external. Based on
your answer to part a, comment on the feasibility of this design for
crewed launches from the earth’s surface.

25 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by an equation of the form

y = b− c
(
t+ ke−t/k

)
,

where e is the base of natural logarithms, and b, c, and k are con-
stants. Because of air resistance, her velocity does not increase at a
steady rate as it would for an object falling in vacuum.
(a) What units would b, c, and k have to have for the equation to
make sense?
(b) Find the person’s velocity, v, as a function of time. [You will
need to use the chain rule, and the fact that d(ex)/dx = ex.]

√

(c) Use your answer from part (b) to get an interpretation of the
constant c. [Hint: e−x approaches zero for large values of x.]
(d) Find the person’s acceleration, a, as a function of time.

√

(e) Use your answer from part (b) to show that if she waits long
enough to open her chute, her acceleration will become very small.
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Problem 26.

26 The figure shows a practical, simple experiment for determin-
ing g to high precision. Two steel balls are suspended from electro-
magnets, and are released simultaneously when the electric current
is shut off. They fall through unequal heights ∆x1 and ∆x2. A
computer records the sounds through a microphone as first one ball
and then the other strikes the floor. From this recording, we can
accurately determine the quantity T defined as T = ∆t2 −∆t1, i.e.,
the time lag between the first and second impacts. Note that since
the balls do not make any sound when they are released, we have
no way of measuring the individual times ∆t2 and ∆t1.
(a) Find an equation for g in terms of the measured quantities T ,
∆x1 and ∆x2.

√

(b) Check the units of your equation.
(c) Check that your equation gives the correct result in the case
where ∆x1 is very close to zero. However, is this case realistic?
(d) What happens when ∆x1 = ∆x2? Discuss this both mathemat-
ically and physically.
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Isaac Newton

Chapter 4

Force and motion

If I have seen farther than others, it is because I have stood
on the shoulders of giants.

Newton, referring to Galileo

Even as great and skeptical a genius as Galileo was unable to
make much progress on the causes of motion. It was not until a gen-
eration later that Isaac Newton (1642-1727) was able to attack the
problem successfully. In many ways, Newton’s personality was the
opposite of Galileo’s. Where Galileo agressively publicized his ideas,
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a / Aristotle said motion had
to be caused by a force. To
explain why an arrow kept flying
after the bowstring was no longer
pushing on it, he said the air
rushed around behind the arrow
and pushed it forward. We know
this is wrong, because an arrow
shot in a vacuum chamber does
not instantly drop to the floor
as it leaves the bow. Galileo
and Newton realized that a force
would only be needed to change
the arrow’s motion, not to make
its motion continue.

Newton had to be coaxed by his friends into publishing a book on
his physical discoveries. Where Galileo’s writing had been popular
and dramatic, Newton originated the stilted, impersonal style that
most people think is standard for scientific writing. (Scientific jour-
nals today encourage a less ponderous style, and papers are often
written in the first person.) Galileo’s talent for arousing animos-
ity among the rich and powerful was matched by Newton’s skill at
making himself a popular visitor at court. Galileo narrowly escaped
being burned at the stake, while Newton had the good fortune of be-
ing on the winning side of the revolution that replaced King James
II with William and Mary of Orange, leading to a lucrative post
running the English royal mint.

Newton discovered the relationship between force and motion,
and revolutionized our view of the universe by showing that the
same physical laws applied to all matter, whether living or nonliv-
ing, on or off of our planet’s surface. His book on force and motion,
the Mathematical Principles of Natural Philosophy, was un-
contradicted by experiment for 200 years, but his other main work,
Optics, was on the wrong track, asserting that light was composed
of particles rather than waves. Newton was also an avid alchemist,
a fact that modern scientists would like to forget.

4.1 Force

We need only explain changes in motion, not motion itself.

So far you’ve studied the measurement of motion in some detail,
but not the reasons why a certain object would move in a certain
way. This chapter deals with the “why” questions. Aristotle’s ideas
about the causes of motion were completely wrong, just like all his
other ideas about physical science, but it will be instructive to start
with them, because they amount to a road map of modern students’
incorrect preconceptions.

Aristotle thought he needed to explain both why motion occurs
and why motion might change. Newton inherited from Galileo the
important counter-Aristotelian idea that motion needs no explana-
tion, that it is only changes in motion that require a physical cause.
Aristotle’s needlessly complex system gave three reasons for motion:

Natural motion, such as falling, came from the tendency of
objects to go to their “natural” place, on the ground, and
come to rest.

Voluntary motion was the type of motion exhibited by ani-
mals, which moved because they chose to.

Forced motion occurred when an object was acted on by some
other object that made it move.
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b / “Our eyes receive blue
light reflected from this painting
because Monet wanted to repre-
sent water with the color blue.”
This is a valid statement at one
level of explanation, but physics
works at the physical level of
explanation, in which blue light
gets to your eyes because it is
reflected by blue pigments in the
paint.

Motion changes due to an interaction between two objects.

In the Aristotelian theory, natural motion and voluntary mo-
tion are one-sided phenomena: the object causes its own motion.
Forced motion is supposed to be a two-sided phenomenon, because
one object imposes its “commands” on another. Where Aristotle
conceived of some of the phenomena of motion as one-sided and
others as two-sided, Newton realized that a change in motion was
always a two-sided relationship of a force acting between two phys-
ical objects.

The one-sided “natural motion” description of falling makes a
crucial omission. The acceleration of a falling object is not caused
by its own “natural” tendencies but by an attractive force between
it and the planet Earth. Moon rocks brought back to our planet do
not “want” to fly back up to the moon because the moon is their
“natural” place. They fall to the floor when you drop them, just
like our homegrown rocks. As we’ll discuss in more detail later in
this course, gravitational forces are simply an attraction that occurs
between any two physical objects. Minute gravitational forces can
even be measured between human-scale objects in the laboratory.

The idea of natural motion also explains incorrectly why things
come to rest. A basketball rolling across a beach slows to a stop
because it is interacting with the sand via a frictional force, not
because of its own desire to be at rest. If it was on a frictionless
surface, it would never slow down. Many of Aristotle’s mistakes
stemmed from his failure to recognize friction as a force.

The concept of voluntary motion is equally flawed. You may
have been a little uneasy about it from the start, because it assumes
a clear distinction between living and nonliving things. Today, how-
ever, we are used to having the human body likened to a complex
machine. In the modern world-view, the border between the living
and the inanimate is a fuzzy no-man’s land inhabited by viruses,
prions, and silicon chips. Furthermore, Aristotle’s statement that
you can take a step forward “because you choose to” inappropriately
mixes two levels of explanation. At the physical level of explana-
tion, the reason your body steps forward is because of a frictional
force acting between your foot and the floor. If the floor was covered
with a puddle of oil, no amount of “choosing to” would enable you
to take a graceful stride forward.

Forces can all be measured on the same numerical scale.

In the Aristotelian-scholastic tradition, the description of mo-
tion as natural, voluntary, or forced was only the broadest level of
classification, like splitting animals into birds, reptiles, mammals,
and amphibians. There might be thousands of types of motion,
each of which would follow its own rules. Newton’s realization that
all changes in motion were caused by two-sided interactions made
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it seem that the phenomena might have more in common than had
been apparent. In the Newtonian description, there is only one cause
for a change in motion, which we call force. Forces may be of differ-
ent types, but they all produce changes in motion according to the
same rules. Any acceleration that can be produced by a magnetic
force can equally well be produced by an appropriately controlled
stream of water. We can speak of two forces as being equal if they
produce the same change in motion when applied in the same situ-
ation, which means that they pushed or pulled equally hard in the
same direction.

The idea of a numerical scale of force and the newton unit were
introduced in chapter 0. To recapitulate briefly, a force is when a
pair of objects push or pull on each other, and one newton is the
force required to accelerate a 1-kg object from rest to a speed of 1
m/s in 1 second.

More than one force on an object

As if we hadn’t kicked poor Aristotle around sufficiently, his
theory has another important flaw, which is important to discuss
because it corresponds to an extremely common student misconcep-
tion. Aristotle conceived of forced motion as a relationship in which
one object was the boss and the other “followed orders.” It there-
fore would only make sense for an object to experience one force at
a time, because an object couldn’t follow orders from two sources at
once. In the Newtonian theory, forces are numbers, not orders, and
if more than one force acts on an object at once, the result is found
by adding up all the forces. It is unfortunate that the use of the
English word “force” has become standard, because to many people
it suggests that you are “forcing” an object to do something. The
force of the earth’s gravity cannot “force” a boat to sink, because
there are other forces acting on the boat. Adding them up gives a
total of zero, so the boat accelerates neither up nor down.

Objects can exert forces on each other at a distance.

Aristotle declared that forces could only act between objects that
were touching, probably because he wished to avoid the type of oc-
cult speculation that attributed physical phenomena to the influence
of a distant and invisible pantheon of gods. He was wrong, however,
as you can observe when a magnet leaps onto your refrigerator or
when the planet earth exerts gravitational forces on objects that are
in the air. Some types of forces, such as friction, only operate be-
tween objects in contact, and are called contact forces. Magnetism,
on the other hand, is an example of a noncontact force. Although
the magnetic force gets stronger when the magnet is closer to your
refrigerator, touching is not required.
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c / Forces are applied to a
saxophone. In this example,
positive signs have been used
consistently for forces to the
right, and negative signs for
forces to the left. (The forces
are being applied to different
places on the saxophone, but the
numerical value of a force carries
no information about that.)

Weight

In physics, an object’s weight, FW , is defined as the earth’s
gravitational force on it. The SI unit of weight is therefore the
Newton. People commonly refer to the kilogram as a unit of weight,
but the kilogram is a unit of mass, not weight. Note that an object’s
weight is not a fixed property of that object. Objects weigh more
in some places than in others, depending on the local strength of
gravity. It is their mass that always stays the same. A baseball
pitcher who can throw a 90-mile-per-hour fastball on earth would
not be able to throw any faster on the moon, because the ball’s
inertia would still be the same.

Positive and negative signs of force

We’ll start by considering only cases of one-dimensional center-
of-mass motion in which all the forces are parallel to the direction of
motion, i.e., either directly forward or backward. In one dimension,
plus and minus signs can be used to indicate directions of forces, as
shown in figure c. We can then refer generically to addition of forces,
rather than having to speak sometimes of addition and sometimes of
subtraction. We add the forces shown in the figure and get 11 N. In
general, we should choose a one-dimensional coordinate system with
its x axis parallel the direction of motion. Forces that point along
the positive x axis are positive, and forces in the opposite direction
are negative. Forces that are not directly along the x axis cannot be
immediately incorporated into this scheme, but that’s OK, because
we’re avoiding those cases for now.

Discussion questions

A In chapter 0, I defined 1 N as the force that would accelerate a
1-kg mass from rest to 1 m/s in 1 s. Anticipating the following section, you
might guess that 2 N could be defined as the force that would accelerate
the same mass to twice the speed, or twice the mass to the same speed.
Is there an easier way to define 2 N based on the definition of 1 N?

4.2 Newton’s first law
We are now prepared to make a more powerful restatement of the
principle of inertia.

Newton’s first law
If the total force acting on an object is zero, its center of mass

continues in the same state of motion.

In other words, an object initially at rest is predicted to remain
at rest if the total force on it is zero, and an object in motion remains
in motion with the same velocity in the same direction. The converse
of Newton’s first law is also true: if we observe an object moving
with constant velocity along a straight line, then the total force on
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it must be zero.

In a future physics course or in another textbook, you may en-
counter the term “net force,” which is simply a synonym for total
force.

What happens if the total force on an object is not zero? It
accelerates. Numerical prediction of the resulting acceleration is the
topic of Newton’s second law, which we’ll discuss in the following
section.

This is the first of Newton’s three laws of motion. It is not
important to memorize which of Newton’s three laws are numbers
one, two, and three. If a future physics teacher asks you something
like, “Which of Newton’s laws are you thinking of?,” a perfectly
acceptable answer is “The one about constant velocity when there’s
zero total force.” The concepts are more important than any spe-
cific formulation of them. Newton wrote in Latin, and I am not
aware of any modern textbook that uses a verbatim translation of
his statement of the laws of motion. Clear writing was not in vogue
in Newton’s day, and he formulated his three laws in terms of a con-
cept now called momentum, only later relating it to the concept of
force. Nearly all modern texts, including this one, start with force
and do momentum later.

An elevator example 1
. An elevator has a weight of 5000 N. Compare the forces that the
cable must exert to raise it at constant velocity, lower it at constant
velocity, and just keep it hanging.

. In all three cases the cable must pull up with a force of exactly
5000 N. Most people think you’d need at least a little more than
5000 N to make it go up, and a little less than 5000 N to let it down,
but that’s incorrect. Extra force from the cable is only necessary
for speeding the car up when it starts going up or slowing it down
when it finishes going down. Decreased force is needed to speed
the car up when it gets going down and to slow it down when it
finishes going up. But when the elevator is cruising at constant
velocity, Newton’s first law says that you just need to cancel the
force of the earth’s gravity.

To many students, the statement in the example that the cable’s
upward force “cancels” the earth’s downward gravitational force im-
plies that there has been a contest, and the cable’s force has won,
vanquishing the earth’s gravitational force and making it disappear.
That is incorrect. Both forces continue to exist, but because they
add up numerically to zero, the elevator has no center-of-mass ac-
celeration. We know that both forces continue to exist because they
both have side-effects other than their effects on the car’s center-of-
mass motion. The force acting between the cable and the car con-
tinues to produce tension in the cable and keep the cable taut. The
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earth’s gravitational force continues to keep the passengers (whom
we are considering as part of the elevator-object) stuck to the floor
and to produce internal stresses in the walls of the car, which must
hold up the floor.

Terminal velocity for falling objects example 2
. An object like a feather that is not dense or streamlined does not
fall with constant acceleration, because air resistance is nonneg-
ligible. In fact, its acceleration tapers off to nearly zero within a
fraction of a second, and the feather finishes dropping at constant
speed (known as its terminal velocity). Why does this happen?

. Newton’s first law tells us that the total force on the feather must
have been reduced to nearly zero after a short time. There are
two forces acting on the feather: a downward gravitational force
from the planet earth, and an upward frictional force from the air.
As the feather speeds up, the air friction becomes stronger and
stronger, and eventually it cancels out the earth’s gravitational
force, so the feather just continues with constant velocity without
speeding up any more.

The situation for a skydiver is exactly analogous. It’s just that the
skydiver experiences perhaps a million times more gravitational
force than the feather, and it is not until she is falling very fast
that the force of air friction becomes as strong as the gravita-
tional force. It takes her several seconds to reach terminal veloc-
ity, which is on the order of a hundred miles per hour.

More general combinations of forces

It is too constraining to restrict our attention to cases where
all the forces lie along the line of the center of mass’s motion. For
one thing, we can’t analyze any case of horizontal motion, since
any object on earth will be subject to a vertical gravitational force!
For instance, when you are driving your car down a straight road,
there are both horizontal forces and vertical forces. However, the
vertical forces have no effect on the center of mass motion, because
the road’s upward force simply counteracts the earth’s downward
gravitational force and keeps the car from sinking into the ground.

Later in the book we’ll deal with the most general case of many
forces acting on an object at any angles, using the mathematical
technique of vector addition, but the following slight generalization
of Newton’s first law allows us to analyze a great many cases of
interest:

Suppose that an object has two sets of forces acting on it, one
set along the line of the object’s initial motion and another set per-
pendicular to the first set. If both sets of forces cancel, then the
object’s center of mass continues in the same state of motion.
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d / Example 4.

A passenger riding the subway example 3
. Describe the forces acting on a person standing in a subway
train that is cruising at constant velocity.

. No force is necessary to keep the person moving relative to
the ground. He will not be swept to the back of the train if the
floor is slippery. There are two vertical forces on him, the earth’s
downward gravitational force and the floor’s upward force, which
cancel. There are no horizontal forces on him at all, so of course
the total horizontal force is zero.

Forces on a sailboat example 4
. If a sailboat is cruising at constant velocity with the wind coming
from directly behind it, what must be true about the forces acting
on it?

. The forces acting on the boat must be canceling each other
out. The boat is not sinking or leaping into the air, so evidently
the vertical forces are canceling out. The vertical forces are the
downward gravitational force exerted by the planet earth and an
upward force from the water.

The air is making a forward force on the sail, and if the boat is
not accelerating horizontally then the water’s backward frictional
force must be canceling it out.

Contrary to Aristotle, more force is not needed in order to maintain
a higher speed. Zero total force is always needed to maintain
constant velocity. Consider the following made-up numbers:

boat moving at
a low, constant
velocity

boat moving at
a high, constant
velocity

forward force of
the wind on the
sail . . .

10,000 N 20,000 N

backward force of
the water on the
hull . . .

−10, 000 N −20, 000 N

total force on the
boat . . .

0 N 0 N

The faster boat still has zero total force on it. The forward force
on it is greater, and the backward force smaller (more negative),
but that’s irrelevant because Newton’s first law has to do with the
total force, not the individual forces.

This example is quite analogous to the one about terminal velocity
of falling objects, since there is a frictional force that increases
with speed. After casting off from the dock and raising the sail,
the boat will accelerate briefly, and then reach its terminal velocity,
at which the water’s frictional force has become as great as the
wind’s force on the sail.
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Discussion question B.

Discussion question C.

A car crash example 5
. If you drive your car into a brick wall, what is the mysterious
force that slams your face into the steering wheel?

. Your surgeon has taken physics, so she is not going to believe
your claim that a mysterious force is to blame. She knows that
your face was just following Newton’s first law. Immediately after
your car hit the wall, the only forces acting on your head were
the same canceling-out forces that had existed previously: the
earth’s downward gravitational force and the upward force from
your neck. There were no forward or backward forces on your
head, but the car did experience a backward force from the wall,
so the car slowed down and your face caught up.

Discussion questions

A Newton said that objects continue moving if no forces are acting
on them, but his predecessor Aristotle said that a force was necessary to
keep an object moving. Why does Aristotle’s theory seem more plausible,
even though we now believe it to be wrong? What insight was Aristotle
missing about the reason why things seem to slow down naturally? Give
an example.

B In the figure what would have to be true about the saxophone’s initial
motion if the forces shown were to result in continued one-dimensional
motion of its center of mass?

C This figure requires an ever further generalization of the preceding
discussion. After studying the forces, what does your physical intuition tell
you will happen? Can you state in words how to generalize the conditions
for one-dimensional motion to include situations like this one?

4.3 Newton’s second law
What about cases where the total force on an object is not zero,
so that Newton’s first law doesn’t apply? The object will have an
acceleration. The way we’ve defined positive and negative signs
of force and acceleration guarantees that positive forces produce
positive accelerations, and likewise for negative values. How much
acceleration will it have? It will clearly depend on both the object’s
mass and on the amount of force.

Experiments with any particular object show that its acceler-
ation is directly proportional to the total force applied to it. This
may seem wrong, since we know of many cases where small amounts
of force fail to move an object at all, and larger forces get it going.
This apparent failure of proportionality actually results from for-
getting that there is a frictional force in addition to the force we
apply to move the object. The object’s acceleration is exactly pro-
portional to the total force on it, not to any individual force on it.
In the absence of friction, even a very tiny force can slowly change
the velocity of a very massive object.
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Experiments also show that the acceleration is inversely propor-
tional to the object’s mass, and combining these two proportional-
ities gives the following way of predicting the acceleration of any
object:

Newton’s second law

a = Ftotal/m ,

where

m is an object’s mass

Ftotal is the sum of the forces acting on it, and

a is the acceleration of the object’s center of mass.

We are presently restricted to the case where the forces of interest
are parallel to the direction of motion.

An accelerating bus example 6
. A VW bus with a mass of 2000 kg accelerates from 0 to 25 m/s
(freeway speed) in 34 s. Assuming the acceleration is constant,
what is the total force on the bus?

. We solve Newton’s second law for Ftotal = ma, and substitute
∆v/∆t for a, giving

Ftotal = m∆v/∆t
= (2000 kg)(25 m/s− 0 m/s)/(34 s)
= 1.5 kN .

Some applications of calculus

Newton doesn’t care what frame of reference you use his laws
in, and this makes him different from Aristotle, who says there is
something special about the frame of reference attached firmly to
the dirt underfoot. Suppose that an object obeys Newton’s second
law in the dirt’s frame. It has some velocity that is a function of
time, and differentiating this function gives dv/dt = F/m. Suppose
we change to the frame of reference of a train that is in motion
relative to the dirt at constant velocity c. Looking out the window
of the train, we see the object moving with velocity v − c. But the
derivative of a constant is zero, so when we differentiate v − c, the
constant goes away, and we get exactly the same result. Newton is
still happy, although Aristotle feels a great disturbance in the force.
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Often we know the forces acting on an object, and we want to
find its motion, i.e., its position as a function of time, x(t). Since
Newton’s second law predicts the acceleration d2x/dt2, we need to
integrate twice to find x. The first integration gives the velocity,
and the constant of integration is also a velocity, which can be fixed
by giving the object’s velocity at some initial time. In the second
integration we pick up a second constant of integration, this one
related to an initial position.

A force that tapers off to zero example 7
. An object of mass m starts at rest at t = to. A force varying as
F = bt−2, where b is a constant, begins acting on it. Find the
greatest speed it will ever have.

.

F = m
dv
dt

dv =
F
m

dt∫
dv =

∫
F
m

dt

v = − b
m

t−1 + vo ,

where vo is a constant of integration. The given initial condition is
that v = 0 at t = to, so we find that vo = b/mto. The negative term
gets closer to zero with increasing time, so the maximum velocity
is achieved by letting t approach infinity. That is, the object will
never stop speeding up, but it will also never surpass a certain
speed. In the limit t → ∞, we identify vo as the velocity that the
object will approach asymptotically.

A generalization

As with the first law, the second law can be easily generalized
to include a much larger class of interesting situations:

Suppose an object is being acted on by two sets of forces, one
set lying parallel to the object’s initial direction of motion and
another set acting along a perpendicular line. If the forces
perpendicular to the initial direction of motion cancel out,
then the object accelerates along its original line of motion
according to a = F‖/m, where F‖ is the sum of the forces
parallel to the line.
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e / A coin slides across a ta-
ble. Even for motion in one
dimension, some of the forces
may not lie along the line of the
motion.

f / A simple double-pan bal-
ance works by comparing the
weight forces exerted by the
earth on the contents of the two
pans. Since the two pans are
at almost the same location on
the earth’s surface, the value
of g is essentially the same for
each one, and equality of weight
therefore also implies equality of
mass.

g / Example 9.

A coin sliding across a table example 8
Suppose a coin is sliding to the right across a table, e, and let’s
choose a positive x axis that points to the right. The coin’s velocity
is positive, and we expect based on experience that it will slow
down, i.e., its acceleration should be negative.

Although the coin’s motion is purely horizontal, it feels both ver-
tical and horizontal forces. The Earth exerts a downward gravi-
tational force F2 on it, and the table makes an upward force F3
that prevents the coin from sinking into the wood. In fact, without
these vertical forces the horizontal frictional force wouldn’t exist:
surfaces don’t exert friction against one another unless they are
being pressed together.

Although F2 and F3 contribute to the physics, they do so only
indirectly. The only thing that directly relates to the acceleration
along the horizontal direction is the horizontal force: a = F1/m.

The relationship between mass and weight

Mass is different from weight, but they’re related. An apple’s
mass tells us how hard it is to change its motion. Its weight measures
the strength of the gravitational attraction between the apple and
the planet earth. The apple’s weight is less on the moon, but its
mass is the same. Astronauts assembling the International Space
Station in zero gravity cannot just pitch massive modules back and
forth with their bare hands; the modules are weightless, but not
massless.

We have already seen the experimental evidence that when weight
(the force of the earth’s gravity) is the only force acting on an ob-
ject, its acceleration equals the constant g, and g depends on where
you are on the surface of the earth, but not on the mass of the ob-
ject. Applying Newton’s second law then allows us to calculate the
magnitude of the gravitational force on any object in terms of its
mass:

|FW | = mg .

(The equation only gives the magnitude, i.e. the absolute value, of
FW , because we’re defining g as a positive number, so it equals the
absolute value of a falling object’s acceleration.)

. Solved problem: Decelerating a car page 146, problem 1

Weight and mass example 9
. Figure g shows masses of one and two kilograms hung from a
spring scale, which measures force in units of newtons. Explain
the readings.

. Let’s start with the single kilogram. It’s not accelerating, so
evidently the total force on it is zero: the spring scale’s upward
force on it is canceling out the earth’s downward gravitational
force. The spring scale tells us how much force it is being obliged
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to supply, but since the two forces are equal in strength, the
spring scale’s reading can also be interpreted as measuring the
strength of the gravitational force, i.e., the weight of the one-
kilogram mass. The weight of a one-kilogram mass should be

FW = mg

= (1.0 kg)(9.8 m/s2) = 9.8 N ,

and that’s indeed the reading on the spring scale.

Similarly for the two-kilogram mass, we have

FW = mg

= (2.0 kg)(9.8 m/s2) = 19.6 N .

Calculating terminal velocity example 10
. Experiments show that the force of air friction on a falling object
such as a skydiver or a feather can be approximated fairly well
with the equation |Fair | = cρAv2, where c is a constant, ρ is the
density of the air, A is the cross-sectional area of the object as
seen from below, and v is the object’s velocity. Predict the object’s
terminal velocity, i.e., the final velocity it reaches after a long time.

. As the object accelerates, its greater v causes the upward force
of the air to increase until finally the gravitational force and the
force of air friction cancel out, after which the object continues
at constant velocity. We choose a coordinate system in which
positive is up, so that the gravitational force is negative and the
force of air friction is positive. We want to find the velocity at which

Fair + FW = 0 , i .e.,

cρAv2 −mg = 0 .

Solving for v gives

vterminal =
√

mg
cρA

self-check A
It is important to get into the habit of interpreting equations. This may be
difficult at first, but eventually you will get used to this kind of reasoning.

(1) Interpret the equation vterminal =
√

mg/cρA in the case of ρ=0.

(2) How would the terminal velocity of a 4-cm steel ball compare to that
of a 1-cm ball?

(3) In addition to teasing out the mathematical meaning of an equation,
we also have to be able to place it in its physical context. How generally
important is this equation? . Answer, p. 524
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x (m) t (s)
10 1.84
20 2.86
30 3.80
40 4.67
50 5.53
60 6.38
70 7.23
80 8.10
90 8.96
100 9.83

h / Discussion question D.

Discussion questions

A Show that the Newton can be reexpressed in terms of the three
basic mks units as the combination kg·m/s2.

B What is wrong with the following statements?

(1) “g is the force of gravity.”

(2) “Mass is a measure of how much space something takes up.”

C Criticize the following incorrect statement:

“If an object is at rest and the total force on it is zero, it stays at rest.
There can also be cases where an object is moving and keeps on moving
without having any total force on it, but that can only happen when there’s
no friction, like in outer space.”

D Table h gives laser timing data for Ben Johnson’s 100 m dash at the
1987 World Championship in Rome. (His world record was later revoked
because he tested positive for steroids.) How does the total force on him
change over the duration of the race?
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4.4 What force is not
Violin teachers have to endure their beginning students’ screeching.
A frown appears on the woodwind teacher’s face as she watches her
student take a breath with an expansion of his ribcage but none
in his belly. What makes physics teachers cringe is their students’
verbal statements about forces. Below I have listed several dicta
about what force is not.

Force is not a property of one object.

A great many of students’ incorrect descriptions of forces could
be cured by keeping in mind that a force is an interaction of two
objects, not a property of one object.

Incorrect statement: “That magnet has a lot of force.”

If the magnet is one millimeter away from a steel ball bearing, they
may exert a very strong attraction on each other, but if they were a
meter apart, the force would be virtually undetectable. The magnet’s
strength can be rated using certain electrical units (ampere−meters2),
but not in units of force.

Force is not a measure of an object’s motion.

If force is not a property of a single object, then it cannot be
used as a measure of the object’s motion.

Incorrect statement: “The freight train rumbled down the tracks with
awesome force.”

Force is not a measure of motion. If the freight train collides with a
stalled cement truck, then some awesome forces will occur, but if it hits
a fly the force will be small.

Force is not energy.

There are two main approaches to understanding the motion of
objects, one based on force and one on a different concept, called en-
ergy. The SI unit of energy is the Joule, but you are probably more
familiar with the calorie, used for measuring food’s energy, and the
kilowatt-hour, the unit the electric company uses for billing you.
Physics students’ previous familiarity with calories and kilowatt-
hours is matched by their universal unfamiliarity with measuring
forces in units of Newtons, but the precise operational definitions of
the energy concepts are more complex than those of the force con-
cepts, and textbooks, including this one, almost universally place the
force description of physics before the energy description. During
the long period after the introduction of force and before the careful
definition of energy, students are therefore vulnerable to situations
in which, without realizing it, they are imputing the properties of
energy to phenomena of force.

Incorrect statement: “How can my chair be making an upward force on
my rear end? It has no power!”

Power is a concept related to energy, e.g., a 100-watt lightbulb uses
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up 100 joules per second of energy. When you sit in a chair, no energy
is used up, so forces can exist between you and the chair without any
need for a source of power.

Force is not stored or used up.

Because energy can be stored and used up, people think force
also can be stored or used up.

Incorrect statement: “If you don’t fill up your tank with gas, you’ll run
out of force.”

Energy is what you’ll run out of, not force.

Forces need not be exerted by living things or machines.

Transforming energy from one form into another usually requires
some kind of living or mechanical mechanism. The concept is not
applicable to forces, which are an interaction between objects, not
a thing to be transferred or transformed.

Incorrect statement: “How can a wooden bench be making an upward
force on my rear end? It doesn’t have any springs or anything inside it.”

No springs or other internal mechanisms are required. If the bench
didn’t make any force on you, you would obey Newton’s second law and
fall through it. Evidently it does make a force on you!

A force is the direct cause of a change in motion.

I can click a remote control to make my garage door change from
being at rest to being in motion. My finger’s force on the button,
however, was not the force that acted on the door. When we speak
of a force on an object in physics, we are talking about a force that
acts directly. Similarly, when you pull a reluctant dog along by its
leash, the leash and the dog are making forces on each other, not
your hand and the dog. The dog is not even touching your hand.

self-check B
Which of the following things can be correctly described in terms of
force?

(1) A nuclear submarine is charging ahead at full steam.

(2) A nuclear submarine’s propellers spin in the water.

(3) A nuclear submarine needs to refuel its reactor periodically. .

Answer, p. 524

Discussion questions

A Criticize the following incorrect statement: “If you shove a book
across a table, friction takes away more and more of its force, until finally
it stops.”

B You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “The ball gets
some force from you when you hit it, and when it hits the wall, it loses part
of that force, so it doesn’t bounce back as fast. The muscles in your arm
are the only things that a force can come from.”
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4.5 Inertial and noninertial frames of reference
One day, you’re driving down the street in your pickup truck, on
your way to deliver a bowling ball. The ball is in the back of the
truck, enjoying its little jaunt and taking in the fresh air and sun-
shine. Then you have to slow down because a stop sign is coming
up. As you brake, you glance in your rearview mirror, and see your
trusty companion accelerating toward you. Did some mysterious
force push it forward? No, it only seems that way because you and
the car are slowing down. The ball is faithfully obeying Newton’s
first law, and as it continues at constant velocity it gets ahead rela-
tive to the slowing truck. No forces are acting on it (other than the
same canceling-out vertical forces that were always acting on it).1

The ball only appeared to violate Newton’s first law because there
was something wrong with your frame of reference, which was based
on the truck.

i / 1. In a frame of reference that
moves with the truck, the bowl-
ing ball appears to violate New-
ton’s first law by accelerating de-
spite having no horizontal forces
on it. 2. In an inertial frame of ref-
erence, which the surface of the
earth approximately is, the bowl-
ing ball obeys Newton’s first law.
It moves equal distances in equal
time intervals, i.e., maintains con-
stant velocity. In this frame of
reference, it is the truck that ap-
pears to have a change in veloc-
ity, which makes sense, since the
road is making a horizontal force
on it.

How, then, are we to tell in which frames of reference Newton’s
laws are valid? It’s no good to say that we should avoid moving
frames of reference, because there is no such thing as absolute rest
or absolute motion. All frames can be considered as being either at
rest or in motion. According to an observer in India, the strip mall
that constituted the frame of reference in panel (b) of the figure
was moving along with the earth’s rotation at hundreds of miles per
hour.

The reason why Newton’s laws fail in the truck’s frame of refer-

1Let’s assume for simplicity that there is no friction.
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ence is not because the truck is moving but because it is accelerating.
(Recall that physicists use the word to refer either to speeding up or
slowing down.) Newton’s laws were working just fine in the moving
truck’s frame of reference as long as the truck was moving at con-
stant velocity. It was only when its speed changed that there was
a problem. How, then, are we to tell which frames are accelerating
and which are not? What if you claim that your truck is not ac-
celerating, and the sidewalk, the asphalt, and the Burger King are
accelerating? The way to settle such a dispute is to examine the
motion of some object, such as the bowling ball, which we know
has zero total force on it. Any frame of reference in which the ball
appears to obey Newton’s first law is then a valid frame of reference,
and to an observer in that frame, Mr. Newton assures us that all
the other objects in the universe will obey his laws of motion, not
just the ball.

Valid frames of reference, in which Newton’s laws are obeyed,
are called inertial frames of reference. Frames of reference that are
not inertial are called noninertial frames. In those frames, objects
violate the principle of inertia and Newton’s first law. While the
truck was moving at constant velocity, both it and the sidewalk
were valid inertial frames. The truck became an invalid frame of
reference when it began changing its velocity.

You usually assume the ground under your feet is a perfectly
inertial frame of reference, and we made that assumption above. It
isn’t perfectly inertial, however. Its motion through space is quite
complicated, being composed of a part due to the earth’s daily rota-
tion around its own axis, the monthly wobble of the planet caused
by the moon’s gravity, and the rotation of the earth around the sun.
Since the accelerations involved are numerically small, the earth is
approximately a valid inertial frame.

Noninertial frames are avoided whenever possible, and we will
seldom, if ever, have occasion to use them in this course. Sometimes,
however, a noninertial frame can be convenient. Naval gunners, for
instance, get all their data from radars, human eyeballs, and other
detection systems that are moving along with the earth’s surface.
Since their guns have ranges of many miles, the small discrepan-
cies between their shells’ actual accelerations and the accelerations
predicted by Newton’s second law can have effects that accumulate
and become significant. In order to kill the people they want to kill,
they have to add small corrections onto the equation a = Ftotal/m.
Doing their calculations in an inertial frame would allow them to
use the usual form of Newton’s second law, but they would have
to convert all their data into a different frame of reference, which
would require cumbersome calculations.

Discussion question

A If an object has a linear x − t graph in a certain inertial frame,
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what is the effect on the graph if we change to a coordinate system with
a different origin? What is the effect if we keep the same origin but re-
verse the positive direction of the x axis? How about an inertial frame
moving alongside the object? What if we describe the object’s motion in
a noninertial frame?
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4.6 ? Numerical techniques
Engineering majors are a majority of the students in the kind of
physics course for which this book is designed, so most likely you
fall into that category. Although you surely recognize that physics
is an important part of your training, if you’ve had any exposure
to how engineers really work, you’re probably skeptical about the
flavor of problem-solving taught in most science courses. You real-
ize that not very many practical engineering calculations fall into
the narrow range of problems for which an exact solution can be
calculated with a piece of paper and a sharp pencil. Real-life prob-
lems are usually complicated, and typically they need to be solved
by number-crunching on a computer, although we can often gain
insight by working simple approximations that have algebraic solu-
tions. Not only is numerical problem-solving more useful in real life,
it’s also educational; as a beginning physics student, I really only
felt like I understood projectile motion after I had worked it both
ways, using algebra and then a computer program.

In this section, we’ll start by seeing how to apply numerical
techniques to some simple problems for which we know the answer in
“closed form,” i.e., a single algebraic expression without any calculus
or infinite sums. After that, we’ll solve a problem that would have
made you world-famous if you could have done it in the seventeenth
century using paper and a quill pen! Before you continue, you should
read Appendix 1 on page 506 that introduces you to the Python
programming language.

First let’s solve the trivial problem of finding the distance trav-
eled by an object moving at speed v to in time t. This closed-form
answer is, of course, vt, but the point is to introduce the techniques
we can use to solve other problems of this type. The basic idea is
to divide the time up into n equal parts, and add up the distances
traveled in all the parts. The following Python function does the
job. Note that you shouldn’t type in the line numbers on the left,
and you don’t need to type in the comments, either.

1 import math

2 def dist(n):

3 t = 1.0 # seconds

4 v = 1.0 # m/s

5 x=0 # Initialize the position.

6 dt = t/n # Divide t into n equal parts.

7 for i in range(n):

8 dx = v*dt # tiny distance traveled in dt

9 x = x+dx # Change x.

10 return x

Of course line 8 shows how silly this example is — if we knew dx =
vdt, then presumably we knew x = vt, which was the answer to
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the whole problem — but the point is to illustrate the technique
with the simplest possible example. How far do we move in 1 s at a
constant speed of 1 m/s? If we do this,

>>> print(dist(10))

1.0

Python produces the expected answer by dividing the time into ten
equal 0.1-second intervals, and adding up the ten 0.1-meter segments
traversed in them. Since the object moves at constant speed, it
doesn’t even matter whether we set n to 10, 1, or a million:

>>> print(dist(1))

1.0

Now let’s do an example where the answer isn’t obvious to people
who don’t know calculus: through what distance does an object fall
in 1.0 s, starting from rest? By integrating a = g to find v = gt
and the integrating again to get x = (1/2)gt2, we know that the
exact answer is 4.9 m. Let’s see if we can reproduce that answer
numerically. The main difference between this program and the
previous one is that now the velocity isn’t constant, so we need to
update it as we go along.

1 import math

2 def dist2(n):

3 t = 1.0 # seconds

4 g=9.8 # strength of gravity, in m/s2

5 x=0 # Initialize the distance fallen.

6 v=0 # Initialize the velocity.

7 dt = t/n # Divide t into n equal parts.

8 for i in range(n):

9 dx = v*dt # tiny distance traveled during tiny time dt

10 x = x+dx # Change x.

11 dv = g*dt # tiny change in vel. during tiny time dt

12 v = v+dv

13 return x

With the drop split up into only 10 equal height intervals, the nu-
merical technique provides a decent approximation:

>>> print(dist2(10))

4.41

By increasing n to ten thousand, we get an answer that’s as close as
we need, given the limited accuracy of the raw data:

>>> print(dist2(10000))

4.89951
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Now let’s use these techniques to solve the following somewhat
whimsical problem, which cannot be solved in closed form using
elementary functions such as sines, exponentials, roots, etc.

Ann E. Hodges of Sylacauga, Alabama is the only person ever
known to have been injured by a meteorite. In 1954, she was struck
in the hip by a meteorite that crashed through the roof of her house
while she was napping on the couch. Since Hodges was asleep, we
do not have direct evidence on the following silly trivia question:
if you’re going to be hit by a meteorite, will you hear it coming,
or will it approach at more than the speed of sound? To answer
this question, we start by constructing a physical model that is
as simple as possible. We take the meteor as entering the earth’s
atmosphere directly along the vertical. The atmosphere does not cut
off suddenly at a certain height; its density can be approximated as
being proportional to e−x/H , where x is the altitude and H ≈ 7.6 km
is called the scale height. The force of air friction is proportional to
the density and to the square of the velocity, so

F = bv2e−x/H

where b is a constant and F is positive in the coordinate system we’ve
chosen, where +x is up. The constant b depends on the size of the
object, and its mass also affects the acceleration through Newton’a
second law, a = F/m. The answer to the question therefore depends
on the size of the meteorite. However, it is reasonable to take the
results for the Sylacauga meteorite as constituting a general answer
to our question, since larger ones are very rare, while the much more
common pebble-sized ones do not make it through the atmosphere
before they disintegrate. The object’s initial velocity as it entered
the atmosphere is not known, so we assume a typical value of 20
km/s. The Sylacauga meteorite was seen breaking up into three
pieces, only two of which were recovered. The complete object’s
mass was probably about 7 kg and its radius about 9 cm. For an
object with this radius, we expect b ≈ 1.5 × 10−3 kg/m. Using
Newton’s second law, we find

a =
Ftotal
m

=
bv2e−x/H −mg

m
.

I don’t know of any way to solve this to find the function x(t) closed
form, so let’s solve it numerically.

This problem is of a slightly different form than the ones above,
where we knew we wanted to follow the motion up until a certain
time. This problem is more of an “Are we there yet?” We want to
stop the calculation where the altitude reaches zero. If it started
at an initial position x at velocity v (v < 0) and maintained that
velocity all the way down to sea level, the time interval would be
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∆t = ∆x/v = (0 − x)/v = −x/v. Since it actually slows down, ∆t
will be greater than that. We guess ten times that as a maximum,
and then have the program check each time through the loop to see
if we’ve hit the ground yet. When this happens, we bail out of the
loop at line 15 before completing all n iterations.

1 import math

2 def meteor(n):

3 r = .09

4 m=7 # mass in kg

5 b=1.5e-3 # const. of prop. for friction, kg/m

6 x = 200.*1000. # start at 200 km altitude, far above air

7 v = -20.*1000. # 20 km/s

8 H = 7.6*1000. # scale height in meters

9 g = 9.8 # m/s2

10 t_max = -x/v*10. # guess the longest time it could take

11 dt = t_max/n # Divide t into n equal parts.

12 for i in range(n):

13 dx = v*dt

14 x = x+dx # Change x.

15 if x<0.: # If we’ve hit the ground...

16 return v # ...quit.

17 F = b*v**2*math.exp(-x/H)-m*g

18 a = F/m

19 dv = a*dt

20 v = v+dv

21 return -999. # If we get here, t_max was too short.

The result is:

>>> print(meteor(100000))

-3946.95754982

For comparison, the speed of sound is about 340 m/s. The an-
swer is that if you are hit by a meteorite, you will not be able to
hear its sound before it hits you.
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j / If the cylinders have slightly
unequal ratios of inertial to grav-
itational mass, their trajectories
will be a little different.

k / A simplified drawing of an
Eötvös-style experiment. If
the two masses, made out of
two different substances, have
slightly different ratios of inertial
to gravitational mass, then the
apparatus will twist slightly as the
earth spins.

4.7 ? Do Newton’s laws mean anything, and if
so, are they true?

On your first encounter with Newton’s first and second laws, you
probably had a hard enough time just figuring out what they re-
ally meant and reconciling them with the whispers in your ear from
the little Aristotelian devil sitting on your shoulder. This optional
section is more likely to be of interest to you if you’re already be-
yond that point and are starting to worry about deeper questions.
It addresses the logical foundations of Newton’s laws and sketches
some of the empirical evidence for and against them. Section 5.7
gives a similar discussion for the third law, which we haven’t yet
encountered.

Newton’s first law

Similar ideas are expressed by the principle of inertia (p. 71)
and Newton’s first law (p. 121). Both of these assertions are false
in a noninertial frame (p. 133). Let’s repackage all of these ideas as
follows:

Newton’s first law (repackaged)
When we find ourselves at any time and place in the universe, and

we want to describe our immediate surroundings, we can always find
some frame of reference that is inertial. An inertial frame is one in
which an object acted on by zero total force responds by moving in
a straight line at constant velocity.

A corollary of this definition of an inertial frame is that given
any inertial frame F, any other frame F′ moving relative to it at
constant velocity is also inertial. That is, we only need to find one
inertial frame, and then we get infinitely many others for free.

Ambiguities due to gravity

But finding that first inertial frame can be as difficult as know-
ing when you’ve found your first true love. Suppose that Alice is
doing experiments inside a certain laboratory (the “immediate sur-
roundings”), and unknown to her, her lab happens to be an elevator
that is in a state of free fall. (We assume that someone will gently
decelerate the lab before it hits the bottome of the shaft, so she isn’t
doomed.) Meanwhile, her twin sister Betty is doing similar exper-
iments sealed inside a lab somewhere in the depths of outer space,
where there is no gravity. Every experiment comes out exactly the
same, regardless of whether it is performed by Alice or by Betty.
Alice releases a pencil and sees it float in front of her; Newton says
this is because she and the pencil are both falling with the same
acceleration. Betty does the same experiment and gets the same
result, but according to Newton the reason is now completely differ-
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ent: Betty and the pencil are not accelerating at all, because there
is no gravity. It appears, then, that the distinction between inertial
and noninertial frames is not always possible to make.

l / A more realistic drawing of Braginskii and Panov’s experiment. The
whole thing was encased in a tall vacuum tube, which was placed in a
sealed basement whose temperature was controlled to within 0.02◦C. The
total mass of the platinum and aluminum test masses, plus the tungsten
wire and the balance arms, was only 4.4 g. To detect tiny motions, a
laser beam was bounced off of a mirror attached to the wire. There was
so little friction that the balance would have taken on the order of several
years to calm down completely after being put in place; to stop these
vibrations, static electrical forces were applied through the two circular
plates to provide very gentle twists on the ellipsoidal mass between them.
After Braginskii and Panov.

One way to recover this distinction would be if we had access to
some exotic matter — call it FloatyStuffTM — that had the ordinary
amount of inertia, but was completely unaffected by gravity. Nor-
mally when we release a material object in a gravitational field, it
experiences a force mg, and then by Newton’s second law its acceler-
ation is a = F/m = mg/m = g. The m’s cancel, which is the reason
that everything falls with the same acceleration (in the absence of
other forces such as air resistance). If Alice and Betty both release
a blob of FloatyStuff, they observe different results. Unfortunately,
nobody has ever found anything like FloatyStuff. In fact, extremely
delicate experiments have shown that the proportionality between
weight and inertia holds to the incredible precision of one part in
1012. Figure j shows a crude test of this type, figure k a concept
better suited to high-precision tests, and l a diagram of the actual
apparatus used in one such experiment.2

If we could tell Newton the story of Alice and Betty, he would
probably propose a different solution: don’t seal the twins in boxes.
Let them look around at all the nearby objects that could be making
gravitational forces on their pencils. Alice will see such an object
(the planet earth), so she’ll know that her pencil is subject to a
nonzero force and that her frame is noninertial. Betty will not see
any planet, so she’ll know that her frame is inertial.

The problem with Newton’s solution is that gravity can act from
very far away. For example, Newton didn’t know that our solar
system was embedded in the Milky Way Galaxy, so he imagined
that the gravitational forces it felt from the uniform background
of stars would almost perfectly cancel out by symmetry. But in
reality, the galactic core is off in the direction of the constellation
Sagittarius, and our solar system experiences a nonzero force in
that direction, which keeps us from flying off straight and leaving

2V.B. Braginskii and V.I. Panov, Soviet Physics JETP 34, 463 (1972).
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the galaxy. No problem, says Newton, that just means we should
have taken our galaxy’s center of mass to define an inertial frame.
But our galaxy turns out to be free-falling toward a distant-future
collision with the Andromeda Galaxy. We can keep on zooming out,
and the residual gravitational accelerations get smaller and smaller,
but there is no guarantee that the process will ever terminate with
a perfect inertial frame. We do find, however, that the accelerations
seem to get pretty small on large scales. For example, our galaxy’s
acceleration due to the gravitational attraction of the Andromeda
Galaxy is only about 10−13 m/s2.

Furthermore, these accelerations don’t necessarily hurt us, even
if we don’t know about them and fail to take them into account.
Alice, free-falling in her elevator, gets perfectly valid experimental
results, identical to Betty’s in outer space. The only real problem
would be if Alice did an experiment sensitive enough to be affected
by the tiny difference in gravity between the floor and ceiling of the
elevator. (The ocean tides are caused by small differences of this
type in the moon’s gravity.) For a small enough laboratory, i.e.,
on a local scale, we expect such effects to be negligible for most
purposes.

An example of an empirical test

These ambiguities in defining an inertial frame are not severe
enough to prevent us from performing highly precise tests of the
first law. One important type of test comes from observations in
which the “laboratory” is our solar system. External bodies do
produce gravitational forces that intrude into the solar system, but
these forces are quite weak, and their differences from one side of
the solar system to another are weaker still. Therefore the workings
of the solar system can be considered as a local experiment.

The left panel of figure m shows a mirror on the moon. By
reflecting laser pulses from the mirror, the distance from the earth
to the moon has been measured to the phenomenal precision of a
few centimeters, or about one part in 1010. This distance changes
for a variety of known reasons. The biggest effect is that the moon’s
orbit is not a circle but an ellipse (see ch. 10), with its long axis
about 11% longer than its short one. A variety of other effects
can also be accounted for, including such exotic phenomena as the
slightly nonspherical shape of the earth, and the gravitational forces
of bodies as small and distant as Pluto. Suppose for simplicity that
all these effects had never existed, so that the moon was initially
placed in a perfectly circular orbit around the earth, and the earth
in a perfectly circular orbit around the sun.

If we then observed something like what is shown in the right
panel of figure m, Newton’s first law would be disproved. If space
itself is symmetrical in all directions, then there is no reason for
the moon’s orbit to poof up near the top of the diagram and con-
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m / Left: The Apollo 11 mission left behind a mirror, which in this photo shows the reflection of the
black sky. Right: A highly exaggerated example of an observation that would disprove Newton’s first law. The
radius of the moon’s orbit gets bigger and smaller over the course of a year.

tract near the bottom. The only possible explanation would be that
there was some “special” or “preferred” frame of reference of the
type envisioned by Aristotle, and that our solar system was mov-
ing relative to it. One could then imagine that the gravitational
force of the earth on the moon could be affected by the moon’s mo-
tion relative to this frame. The lunar laser ranging data3 contain
no measurable effect of the type shown in figure m, so that if the
moon’s orbit is distorted in this way (or in a variety of other ways),
the distortion must be less than a few centimeters. This constitutes
a very strict upper limit on violation of Newton’s first law by gravi-
tational forces. If the first law is violated, and the violation causes a
fractional change in gravity that is proportional to the velocity rela-
tive to the hypothetical preferred frame, then the change is no more
than about one part in 107, even if the velocity is comparable to
the speed of light. This is only one particular experiment involving
gravity, but many different types of experiments have been done,
and none have given any evidence for a preferred frame.

Newton’s second law

Newton’s second law, a = F/m, is false in general.

If it were always valid, then by applying a constant force we

3Battat, Chandler, and Stubbs, http://arxiv.org/abs/0710.0702
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could accelerate an object continuously until it was moving faster
than the speed of light (relative to us). But this can’t be so, because
we’ve seen in section 2.6 that relativity forbids objects from moving
relative to one another at speeds faster than the speed of light. We
will see in section 14.7 that an object’s inertia F/a is larger for an
object moving closer to the speed of light (relative to the observer
who measures F and a). It is not equal to a constant m as claimed
by the second law. These variations in inertia have been measured
experimentally, and they can be huge — as much as a factor of
3 × 1011 for a cosmic ray detected in the sky over Utah in 1994.4

The second law is nevertheless highly accurate within its domain of
validity, i.e., small relative speeds.

The second law also fails at the microscopic level because parti-
cles are not just particles, they’re also waves. One consequence of
their wavelike nature is that they do not have exactly well defined
positions, so that the acceleration a appearing in a = F/m is not
even well defined.

4Bird et al., http://arxiv.org/abs/astro-ph/9410067v1
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Summary
Selected vocabulary
weight . . . . . . . the force of gravity on an object, equal to mg
inertial frame . . a frame of reference that is not accelerating,

one in which Newton’s first law is true
noninertial frame an accelerating frame of reference, in which

Newton’s first law is violated

Notation
FW . . . . . . . . weight

Other terminology and notation
net force . . . . . another way of saying “total force”

Summary

Newton’s first law of motion states that if all the forces on an
object cancel each other out, then the object continues in the same
state of motion. This is essentially a more refined version of Galileo’s
principle of inertia, which did not refer to a numerical scale of force.

Newton’s second law of motion allows the prediction of an ob-
ject’s acceleration given its mass and the total force on it, acm =
Ftotal/m. This is only the one-dimensional version of the law; the
full-three dimensional treatment will come in chapter 8, Vectors.
Without the vector techniques, we can still say that the situation
remains unchanged by including an additional set of vectors that
cancel among themselves, even if they are not in the direction of
motion.

Newton’s laws of motion are only true in frames of reference that
are not accelerating, known as inertial frames.

Even in one-dimensional motion, it is seldom possible to solve
real-world problems and predict the motion of an object in closed
form. However, there are straightforward numerical techniques for
solving such problems.
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Problem 4, part c.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A car is accelerating forward along a straight road. If the force
of the road on the car’s wheels, pushing it forward, is a constant 3.0
kN, and the car’s mass is 1000 kg, then how long will the car take
to go from 20 m/s to 50 m/s? . Solution, p. 513

2 (a) Let T be the maximum tension that an elevator’s cable can
withstand without breaking, i.e., the maximum force it can exert.
If the motor is programmed to give the car an acceleration a, what
is the maximum mass that the car can have, including passengers,
if the cable is not to break?

√

(b) Interpret the equation you derived in the special cases of a = 0
and of a downward acceleration of magnitude g.

(“Interpret” means to analyze the behavior of the equation, and
connect that to reality, as in the self-check on page 129.)

3 An object is observed to be moving at constant speed in a
certain direction. Can you conclude that no forces are acting on it?
Explain. [Based on a problem by Serway and Faughn.]

4 You are given a large sealed box, and are not allowed to open
it. Which of the following experiments measure its mass, and which
measure its weight? [Hint: Which experiments would give different
results on the moon?]
(a) Put it on a frozen lake, throw a rock at it, and see how fast it
scoots away after being hit.
(b) Drop it from a third-floor balcony, and measure how loud the
sound is when it hits the ground.
(c) As shown in the figure, connect it with a spring to the wall, and
watch it vibrate.

. Solution, p. 514

5 While escaping from the palace of the evil Martian emperor,
Sally Spacehound jumps from a tower of height h down to the
ground. Ordinarily the fall would be fatal, but she fires her blaster
rifle straight down, producing an upward force of magnitude FB.
This force is insufficient to levitate her, but it does cancel out some
of the force of gravity. During the time t that she is falling, Sally is
unfortunately exposed to fire from the emperor’s minions, and can’t
dodge their shots. Let m be her mass, and g the strength of gravity
on Mars.
(a) Find the time t in terms of the other variables.
(b) Check the units of your answer to part a.
(c) For sufficiently large values of FB, your answer to part a becomes
nonsense — explain what’s going on.

√
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Problem 9.

6 At low speeds, every car’s acceleration is limited by traction,
not by the engine’s power. Suppose that at low speeds, a certain
car is normally capable of an acceleration of 3 m/s2. If it is towing
a trailer with half as much mass as the car itself, what acceleration
can it achieve? [Based on a problem from PSSC Physics.]

7 A helicopter of mass m is taking off vertically. The only forces
acting on it are the earth’s gravitational force and the force, Fair,
of the air pushing up on the propeller blades.
(a) If the helicopter lifts off at t = 0, what is its vertical speed at
time t?
(b) Check that the units of your answer to part a make sense.
(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you’ve figured out this mathematical
relationship, show that it makes sense physically.
(d) Plug numbers into your equation from part a, using m = 2300
kg, Fair = 27000 N, and t = 4.0 s.

√

8 A uranium atom deep in the earth spits out an alpha particle.
An alpha particle is a fragment of an atom. This alpha particle has
initial speed v, and travels a distance d before stopping in the earth.
(a) Find the force, F , from the dirt that stopped the particle, in
terms of v, d, and its mass, m. Don’t plug in any numbers yet.
Assume that the force was constant.

√

(b) Show that your answer has the right units.
(c) Discuss how your answer to part a depends on all three variables,
and show that it makes sense. That is, for each variable, discuss
what would happen to the result if you changed it while keeping the
other two variables constant. Would a bigger value give a smaller
result, or a bigger result? Once you’ve figured out this mathematical
relationship, show that it makes sense physically.
(d) Evaluate your result for m = 6.7×10−27 kg, v = 2.0×104 km/s,
and d = 0.71 mm.

√

9 A blimp is initially at rest, hovering, when at t = 0 the pilot
turns on the motor of the propeller. The motor cannot instantly
get the propeller going, but the propeller speeds up steadily. The
steadily increasing force between the air and the propeller is given
by the equation F = kt, where k is a constant. If the mass of the
blimp is m, find its position as a function of time. (Assume that
during the period of time you’re dealing with, the blimp is not yet
moving fast enough to cause a significant backward force due to air
resistance.)

√

10 Some garden shears are like a pair of scissors: one sharp blade
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slices past another. In the “anvil” type, however, a sharp blade
presses against a flat one rather than going past it. A gardening
book says that for people who are not very physically strong, the
anvil type can make it easier to cut tough branches, because it
concentrates the force on one side. Evaluate this claim based on
Newton’s laws. [Hint: Consider the forces acting on the branch,
and the motion of the branch.]

11 In the 1964 Olympics in Tokyo, the best men’s high jump
was 2.18 m. Four years later in Mexico City, the gold medal in the
same event was for a jump of 2.24 m. Because of Mexico City’s
altitude (2400 m), the acceleration of gravity there is lower than
that in Tokyo by about 0.01 m/s2. Suppose a high-jumper has a
mass of 72 kg.
(a) Compare his mass and weight in the two locations.
(b) Assume that he is able to jump with the same initial vertical
velocity in both locations, and that all other conditions are the same
except for gravity. How much higher should he be able to jump in
Mexico City?

√

(Actually, the reason for the big change between ’64 and ’68 was the
introduction of the “Fosbury flop.”) ?

12 The factorial of an integer n, written n!, is defined as the
product of all the positive integers less than or equal to n. For
example, 3! = 1 × 2 × 3 = 6. Write a Python program to compute
30!. (Python computes integer results with unlimited precision, so
you won’t get any problems with rounding or overflows.) Turn in a
printout of both your program and its output.

13 A ball falls from a height h. Without air resistance, the time
it takes to reach the floor is

√
2h/g. Now suppose that air resistance

is not negligible. For a smooth sphere of radius r, moving at speed
v through air of density ρ, the force of air resistance is (π/4)ρv2r2.
Modify the program meteor on page 139 to handle this problem,
and find the resulting change in the fall time in the case of a 21 g
ball of radius 1.0 cm, falling from a height of 1.0 m. The density of
air at sea level is about 1.2 kg/m3. You will need to use a very large
value of n to achieve the required precision. Turn in a printout of
both your program and its output. Answer: 0.34 ms.

148 Chapter 4 Force and motion



Exercise 4: Force and motion
Equipment:

2-meter pieces of butcher paper

wood blocks with hooks

string

masses to put on top of the blocks to increase friction

spring scales (preferably calibrated in Newtons)

Suppose a person pushes a crate, sliding it across the floor at a certain speed, and then repeats
the same thing but at a higher speed. This is essentially the situation you will act out in this
exercise. What do you think is different about her force on the crate in the two situations?
Discuss this with your group and write down your hypothesis:

1. First you will measure the amount of friction between the wood block and the butcher paper
when the wood and paper surfaces are slipping over each other. The idea is to attach a spring
scale to the block and then slide the butcher paper under the block while using the scale to
keep the block from moving with it. Depending on the amount of force your spring scale was
designed to measure, you may need to put an extra mass on top of the block in order to increase
the amount of friction. It is a good idea to use long piece of string to attach the block to the
spring scale, since otherwise one tends to pull at an angle instead of directly horizontally.

First measure the amount of friction force when sliding the butcher paper as slowly as possi-
ble:

Now measure the amount of friction force at a significantly higher speed, say 1 meter per second.
(If you try to go too fast, the motion is jerky, and it is impossible to get an accurate reading.)

Discuss your results. Why are we justified in assuming that the string’s force on the block (i.e.,
the scale reading) is the same amount as the paper’s frictional force on the block?

2. Now try the same thing but with the block moving and the paper standing still. Try two
different speeds.

Do your results agree with your original hypothesis? If not, discuss what’s going on. How does
the block “know” how fast to go?
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What forces act on the girl?

Chapter 5

Analysis of forces

5.1 Newton’s third law
Newton created the modern concept of force starting from his insight
that all the effects that govern motion are interactions between two
objects: unlike the Aristotelian theory, Newtonian physics has no
phenomena in which an object changes its own motion.
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a / Two magnets exert forces
on each other.

b / Two people’s hands exert
forces on each other.

c / Rockets work by pushing
exhaust gases out the back.
Newton’s third law says that if the
rocket exerts a backward force
on the gases, the gases must
make an equal forward force on
the rocket. Rocket engines can
function above the atmosphere,
unlike propellers and jets, which
work by pushing against the
surrounding air.

Is one object always the “order-giver” and the other the “order-
follower”? As an example, consider a batter hitting a baseball. The
bat definitely exerts a large force on the ball, because the ball ac-
celerates drastically. But if you have ever hit a baseball, you also
know that the ball makes a force on the bat — often with painful
results if your technique is as bad as mine!

How does the ball’s force on the bat compare with the bat’s
force on the ball? The bat’s acceleration is not as spectacular as
the ball’s, but maybe we shouldn’t expect it to be, since the bat’s
mass is much greater. In fact, careful measurements of both objects’
masses and accelerations would show that mballaball is very nearly
equal to −mbatabat, which suggests that the ball’s force on the bat
is of the same magnitude as the bat’s force on the ball, but in the
opposite direction.

Figures a and b show two somewhat more practical laboratory
experiments for investigating this issue accurately and without too
much interference from extraneous forces.

In experiment a, a large magnet and a small magnet are weighed
separately, and then one magnet is hung from the pan of the top
balance so that it is directly above the other magnet. There is an
attraction between the two magnets, causing the reading on the top
scale to increase and the reading on the bottom scale to decrease.
The large magnet is more “powerful” in the sense that it can pick
up a heavier paperclip from the same distance, so many people have
a strong expectation that one scale’s reading will change by a far
different amount than the other. Instead, we find that the two
changes are equal in magnitude but opposite in direction: the force
of the bottom magnet pulling down on the top one has the same
strength as the force of the top one pulling up on the bottom one.

In experiment b, two people pull on two spring scales. Regardless
of who tries to pull harder, the two forces as measured on the spring
scales are equal. Interposing the two spring scales is necessary in
order to measure the forces, but the outcome is not some artificial
result of the scales’ interactions with each other. If one person slaps
another hard on the hand, the slapper’s hand hurts just as much
as the slappee’s, and it doesn’t matter if the recipient of the slap
tries to be inactive. (Punching someone in the mouth causes just
as much force on the fist as on the lips. It’s just that the lips are
more delicate. The forces are equal, but not the levels of pain and
injury.)

Newton, after observing a series of results such as these, decided
that there must be a fundamental law of nature at work:
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d / A swimmer doing the breast
stroke pushes backward against
the water. By Newton’s third law,
the water pushes forward on him.

e / Newton’s third law does
not mean that forces always
cancel out so that nothing can
ever move. If these two figure
skaters, initially at rest, push
against each other, they will both
move.

Newton’s third law
Forces occur in equal and opposite pairs: whenever object A exerts
a force on object B, object B must also be exerting a force on object
A. The two forces are equal in magnitude and opposite in direction.

In one-dimensional situations, we can use plus and minus signs to
indicate the directions of forces, and Newton’s third law can be
written succinctly as FA on B = −FB on A. Section 5.7 gives a more
detailed discussion of the logical and empirical underpinnings of the
third law.

self-check A
Figure d analyzes swimming using Newton’s third law. Do a similar
analysis for a sprinter leaving the starting line. . Answer, p. 524

There is no cause and effect relationship between the two forces
in Newton’s third law. There is no “original” force, and neither one
is a response to the other. The pair of forces is a relationship, like
marriage, not a back-and-forth process like a tennis match. Newton
came up with the third law as a generalization about all the types of
forces with which he was familiar, such as frictional and gravitational
forces. When later physicists discovered a new type force, such
as the force that holds atomic nuclei together, they had to check
whether it obeyed Newton’s third law. So far, no violation of the
third law has ever been discovered, whereas the first and second
laws were shown to have limitations by Einstein and the pioneers of
atomic physics.

The English vocabulary for describing forces is unfortunately
rooted in Aristotelianism, and often implies incorrectly that forces
are one-way relationships. It is unfortunate that a half-truth such as
“the table exerts an upward force on the book” is so easily expressed,
while a more complete and correct description ends up sounding
awkward or strange: “the table and the book interact via a force,”
or “the table and book participate in a force.”

To students, it often sounds as though Newton’s third law im-
plies nothing could ever change its motion, since the two equal and
opposite forces would always cancel. The two forces, however, are
always on two different objects, so it doesn’t make sense to add
them in the first place — we only add forces that are acting on the
same object. If two objects are interacting via a force and no other
forces are involved, then both objects will accelerate — in opposite
directions!
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f / It doesn’t make sense for the
man to talk about using the
woman’s money to cancel out his
bar tab, because there is no good
reason to combine his debts and
her assets. Similarly, it doesn’t
make sense to refer to the equal
and opposite forces of Newton’s
third law as canceling. It only
makes sense to add up forces
that are acting on the same ob-
ject, whereas two forces related
to each other by Newton’s third
law are always acting on two dif-
ferent objects.

A mnemonic for using Newton’s third law correctly

Mnemonics are tricks for memorizing things. For instance, the
musical notes that lie between the lines on the treble clef spell the
word FACE, which is easy to remember. Many people use the
mnemonic “SOHCAHTOA” to remember the definitions of the sine,
cosine, and tangent in trigonometry. I have my own modest offering,
POFOSTITO, which I hope will make it into the mnemonics hall of
fame. It’s a way to avoid some of the most common problems with
applying Newton’s third law correctly:

A book lying on a table example 1
. A book is lying on a table. What force is the Newton’s-third-law
partner of the earth’s gravitational force on the book?

Answer: Newton’s third law works like “B on A, A on B,” so the
partner must be the book’s gravitational force pulling upward on
the planet earth. Yes, there is such a force! No, it does not cause
the earth to do anything noticeable.

Incorrect answer: The table’s upward force on the book is the
Newton’s-third-law partner of the earth’s gravitational force on the
book.

This answer violates two out of three of the commandments of
POFOSTITO. The forces are not of the same type, because the
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Optional Topic: Newton’s Third
Law and Action at a Distance
Newton’s third law is completely
symmetric in the sense that nei-
ther force constitutes a delayed
response to the other. Newton’s
third law does not even mention
time, and the forces are supposed
to agree at any given instant. This
creates an interesting situation
when it comes to noncontact forces.
Suppose two people are hold-
ing magnets, and when one per-
son waves or wiggles her mag-
net, the other person feels an
effect on his. In this way they
can send signals to each other
from opposite sides of a wall, and
if Newton’s third law is correct, it
would seem that the signals are
transmitted instantly, with no time
lag. The signals are indeed trans-
mitted quite quickly, but experi-
ments with electrically controlled
magnets show that the signals
do not leap the gap instantly: they
travel at the same speed as light,
which is an extremely high speed
but not an infinite one.

Is this a contradiction to New-
ton’s third law? Not really. Ac-
cording to current theories, there
are no true noncontact forces.
Action at a distance does not ex-
ist. Although it appears that the
wiggling of one magnet affects
the other with no need for any-
thing to be in contact with any-
thing, what really happens is that
wiggling a magnet creates a rip-
ple in the magnetic field pattern
that exists even in empty space.
The magnet shoves the ripplies
out with a kick and receives a
kick in return, in strict obedience
to Newton’s third law. The rip-
ples spread out in all directions,
and the ones that hit the other
magnet then interact with it, again
obeying Newton’s third law.

table’s upward force on the book is not gravitational. Also, three
objects are involved instead of two: the book, the table, and the
planet earth.

Pushing a box up a hill example 2
. A person is pushing a box up a hill. What force is related by
Newton’s third law to the person’s force on the box?

. The box’s force on the person.

Incorrect answer: The person’s force on the box is opposed by
friction, and also by gravity.

This answer fails all three parts of the POFOSTITO test, the
most obvious of which is that three forces are referred to instead
of a pair.

. Solved problem: More about example 2 page 178, problem 2

. Solved problem: Why did it accelerate? page 178, problem 1

Discussion questions

A When you fire a gun, the exploding gases push outward in all
directions, causing the bullet to accelerate down the barrel. What third-
law pairs are involved? [Hint: Remember that the gases themselves are
an object.]

B Tam Anh grabs Sarah by the hand and tries to pull her. She tries
to remain standing without moving. A student analyzes the situation as
follows. “If Tam Anh’s force on Sarah is greater than her force on him,
he can get her to move. Otherwise, she’ll be able to stay where she is.”
What’s wrong with this analysis?

C You hit a tennis ball against a wall. Explain any and all incorrect
ideas in the following description of the physics involved: “According to
Newton’s third law, there has to be a force opposite to your force on the
ball. The opposite force is the ball’s mass, which resists acceleration, and
also air resistance.”

5.2 Classification and behavior of forces
One of the most basic and important tasks of physics is to classify
the forces of nature. I have already referred informally to “types” of
forces such as friction, magnetism, gravitational forces, and so on.
Classification systems are creations of the human mind, so there is
always some degree of arbitrariness in them. For one thing, the level
of detail that is appropriate for a classification system depends on
what you’re trying to find out. Some linguists, the “lumpers,” like to
emphasize the similarities among languages, and a few extremists
have even tried to find signs of similarities between words in lan-
guages as different as English and Chinese, lumping the world’s lan-
guages into only a few large groups. Other linguists, the “splitters,”
might be more interested in studying the differences in pronuncia-
tion between English speakers in New York and Connecticut. The
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g / A scientific classification
system.

splitters call the lumpers sloppy, but the lumpers say that science
isn’t worthwhile unless it can find broad, simple patterns within the
seemingly complex universe.

Scientific classification systems are also usually compromises be-
tween practicality and naturalness. An example is the question of
how to classify flowering plants. Most people think that biological
classification is about discovering new species, naming them, and
classifying them in the class-order-family-genus-species system ac-
cording to guidelines set long ago. In reality, the whole system is in
a constant state of flux and controversy. One very practical way of
classifying flowering plants is according to whether their petals are
separate or joined into a tube or cone — the criterion is so clear that
it can be applied to a plant seen from across the street. But here
practicality conflicts with naturalness. For instance, the begonia has
separate petals and the pumpkin has joined petals, but they are so
similar in so many other ways that they are usually placed within
the same order. Some taxonomists have come up with classification
criteria that they claim correspond more naturally to the apparent
relationships among plants, without having to make special excep-
tions, but these may be far less practical, requiring for instance the
examination of pollen grains under an electron microscope.

In physics, there are two main systems of classification for forces.
At this point in the course, you are going to learn one that is very
practical and easy to use, and that splits the forces up into a rel-
atively large number of types: seven very common ones that we’ll
discuss explicitly in this chapter, plus perhaps ten less important
ones such as surface tension, which we will not bother with right
now.

Physicists, however, are obsessed with finding simple patterns,
so recognizing as many as fifteen or twenty types of forces strikes
them as distasteful and overly complex. Since about the year 1900,
physics has been on an aggressive program to discover ways in which
these many seemingly different types of forces arise from a smaller
number of fundamental ones. For instance, when you press your
hands together, the force that keeps them from passing through each
other may seem to have nothing to do with electricity, but at the
atomic level, it actually does arise from electrical repulsion between
atoms. By about 1950, all the forces of nature had been explained
as arising from four fundamental types of forces at the atomic and
nuclear level, and the lumping-together process didn’t stop there.
By the 1960’s the length of the list had been reduced to three, and
some theorists even believe that they may be able to reduce it to
two or one. Although the unification of the forces of nature is one of
the most beautiful and important achievements of physics, it makes
much more sense to start this course with the more practical and
easy system of classification. The unified system of four forces will
be one of the highlights of the end of your introductory physics
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sequence.

h / A practical classification scheme for forces.

The practical classification scheme which concerns us now can
be laid out in the form of the tree shown in figure h. The most
specific types of forces are shown at the tips of the branches, and
it is these types of forces that are referred to in the POFOSTITO
mnemonic. For example, electrical and magnetic forces belong to
the same general group, but Newton’s third law would never relate
an electrical force to a magnetic force.

The broadest distinction is that between contact and noncontact
forces, which has been discussed in ch. 4. Among the contact forces,
we distinguish between those that involve solids only and those that
have to do with fluids, a term used in physics to include both gases
and liquids.

It should not be necessary to memorize this diagram by rote.
It is better to reinforce your memory of this system by calling to
mind your commonsense knowledge of certain ordinary phenomena.
For instance, we know that the gravitational attraction between us
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and the planet earth will act even if our feet momentarily leave the
ground, and that although magnets have mass and are affected by
gravity, most objects that have mass are nonmagnetic.

Hitting a wall example 3
. A bullet, flying horizontally, hits a steel wall. What type of force
is there between the bullet and the wall?

. Starting at the bottom of the tree, we determine that the force
is a contact force, because it only occurs once the bullet touches
the wall. Both objects are solid. The wall forms a vertical plane.
If the nose of the bullet was some shape like a sphere, you might
imagine that it would only touch the wall at one point. Realisti-
cally, however, we know that a lead bullet will flatten out a lot on
impact, so there is a surface of contact between the two, and its
orientation is vertical. The effect of the force on the bullet is to
stop the horizontal motion of the bullet, and this horizontal ac-
celeration must be produced by a horizontal force. The force is
therefore perpendicular to the surface of contact, and it’s also re-
pulsive (tending to keep the bullet from entering the wall), so it
must be a normal force.

Diagram h is meant to be as simple as possible while including
most of the forces we deal with in everyday life. If you were an
insect, you would be much more interested in the force of surface
tension, which allowed you to walk on water. I have not included
the nuclear forces, which are responsible for holding the nuclei of
atoms, because they are not evident in everyday life.

You should not be afraid to invent your own names for types of
forces that do not fit into the diagram. For instance, the force that
holds a piece of tape to the wall has been left off of the tree, and if
you were analyzing a situation involving scotch tape, you would be
absolutely right to refer to it by some commonsense name such as
“sticky force.”

On the other hand, if you are having trouble classifying a certain
force, you should also consider whether it is a force at all. For
instance, if someone asks you to classify the force that the earth has
because of its rotation, you would have great difficulty creating a
place for it on the diagram. That’s because it’s a type of motion,
not a type of force!

Normal forces

A normal force, FN , is a force that keeps one solid object from
passing through another. “Normal” is simply a fancy word for “per-
pendicular,” meaning that the force is perpendicular to the surface
of contact. Intuitively, it seems the normal force magically adjusts
itself to provide whatever force is needed to keep the objects from
occupying the same space. If your muscles press your hands together
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i / A model that correctly ex-
plains many properties of friction.
The microscopic bumps and
holes in two surfaces dig into
each other.

j / Static friction: the tray doesn’t
slip on the waiter’s fingers.

k / Kinetic friction: the car
skids.

gently, there is a gentle normal force. Press harder, and the normal
force gets stronger. How does the normal force know how strong to
be? The answer is that the harder you jam your hands together,
the more compressed your flesh becomes. Your flesh is acting like
a spring: more force is required to compress it more. The same is
true when you push on a wall. The wall flexes imperceptibly in pro-
portion to your force on it. If you exerted enough force, would it be
possible for two objects to pass through each other? No, typically
the result is simply to strain the objects so much that one of them
breaks.

Gravitational forces

As we’ll discuss in more detail later in the course, a gravitational
force exists between any two things that have mass. In everyday life,
the gravitational force between two cars or two people is negligible,
so the only noticeable gravitational forces are the ones between the
earth and various human-scale objects. We refer to these planet-
earth-induced gravitational forces as weight forces, and as we have
already seen, their magnitude is given by |FW | = mg.

. Solved problem: Weight and mass page 178, problem 3

Static and kinetic friction

If you have pushed a refrigerator across a kitchen floor, you have
felt a certain series of sensations. At first, you gradually increased
your force on the refrigerator, but it didn’t move. Finally, you sup-
plied enough force to unstick the fridge, and there was a sudden
jerk as the fridge started moving. Once the fridge was unstuck, you
could reduce your force significantly and still keep it moving.

While you were gradually increasing your force, the floor’s fric-
tional force on the fridge increased in response. The two forces on
the fridge canceled, and the fridge didn’t accelerate. How did the
floor know how to respond with just the right amount of force? Fig-
ure i shows one possible model of friction that explains this behavior.
(A scientific model is a description that we expect to be incomplete,
approximate, or unrealistic in some ways, but that nevertheless suc-
ceeds in explaining a variety of phenomena.) Figure i/1 shows a
microscopic view of the tiny bumps and holes in the surfaces of the
floor and the refrigerator. The weight of the fridge presses the two
surfaces together, and some of the bumps in one surface will settle
as deeply as possible into some of the holes in the other surface. In
i/2, your leftward force on the fridge has caused it to ride up a little
higher on the bump in the floor labeled with a small arrow. Still
more force is needed to get the fridge over the bump and allow it to
start moving. Of course, this is occurring simultaneously at millions
of places on the two surfaces.

Once you had gotten the fridge moving at constant speed, you
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l / Many landfowl, even those
that are competent fliers, prefer
to escape from a predator by
running upward rather than by
flying. This partridge is running
up a vertical tree trunk. Humans
can’t walk up walls because there
is no normal force and therefore
no frictional force; when FN = 0,
the maximum force of static
friction Fs,max = µsFN is also
zero. The partridge, however,
has wings that it can flap in order
to create a force between it and
the air. Typically when a bird
flaps its wings, the resulting force
from the air is in the direction
that would tend to lift the bird
up. In this situation, however,
the partridge changes its style
of flapping so that the direction
is reversed. The normal force
between the feet and the tree
allows a nonzero static frictional
force. The mechanism is similar
to that of a spoiler fin on a racing
car. Some evolutionary biologists
believe that when vertebrate
flight first evolved, in dinosaurs,
there was first a stage in which
the wings were used only as an
aid in running up steep inclines,
and only later a transition to
flight. (Redrawn from a figure by
K.P. Dial.)

found that you needed to exert less force on it. Since zero total force
is needed to make an object move with constant velocity, the floor’s
rightward frictional force on the fridge has apparently decreased
somewhat, making it easier for you to cancel it out. Our model also
gives a plausible explanation for this fact: as the surfaces slide past
each other, they don’t have time to settle down and mesh with one
another, so there is less friction.

Even though this model is intuitively appealing and fairly suc-
cessful, it should not be taken too seriously, and in some situations
it is misleading. For instance, fancy racing bikes these days are
made with smooth tires that have no tread — contrary to what
we’d expect from our model, this does not cause any decrease in
friction. Machinists know that two very smooth and clean metal
surfaces may stick to each other firmly and be very difficult to slide
apart. This cannot be explained in our model, but makes more
sense in terms of a model in which friction is described as arising
from chemical bonds between the atoms of the two surfaces at their
points of contact: very flat surfaces allow more atoms to come in
contact.

Since friction changes its behavior dramatically once the sur-
faces come unstuck, we define two separate types of frictional forces.
Static friction is friction that occurs between surfaces that are not
slipping over each other. Slipping surfaces experience kinetic fric-
tion. The forces of static and kinetic friction, notated Fs and Fk, are
always parallel to the surface of contact between the two objects.

self-check B
1. When a baseball player slides in to a base, is the friction static, or
kinetic?

2. A mattress stays on the roof of a slowly accelerating car. Is the
friction static, or kinetic?

3. Does static friction create heat? Kinetic friction? . Answer, p. 524

The maximum possible force of static friction depends on what
kinds of surfaces they are, and also on how hard they are being
pressed together. The approximate mathematical relationships can
be expressed as follows:

Fs,max = µsFN ,

where µs is a unitless number, called the coefficient of static friction,
which depends on what kinds of surfaces they are. The maximum
force that static friction can supply, µsFN , represents the boundary
between static and kinetic friction. It depends on the normal force,
which is numerically equal to whatever force is pressing the two
surfaces together. In terms of our model, if the two surfaces are
being pressed together more firmly, a greater sideways force will be
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required in order to make the irregularities in the surfaces ride up
and over each other.

Note that just because we use an adjective such as “applied” to
refer to a force, that doesn’t mean that there is some special type
of force called the “applied force.” The applied force could be any
type of force, or it could be the sum of more than one force trying
to make an object move.

self-check C
The arrows in figure l show the forces of the tree trunk on the partridge.
Describe the forces the bird makes on the tree. . Answer, p. 524

The force of kinetic friction on each of the two objects is in the
direction that resists the slippage of the surfaces. Its magnitude is
usually well approximated as

Fk = µkFN

where µk is the coefficient of kinetic friction. Kinetic friction is
usually more or less independent of velocity.

m / We choose a coordinate sys-
tem in which the applied force,
i.e., the force trying to move the
objects, is positive. The friction
force is then negative, since it is
in the opposite direction. As you
increase the applied force, the
force of static friction increases to
match it and cancel it out, until the
maximum force of static friction is
surpassed. The surfaces then be-
gin slipping past each other, and
the friction force becomes smaller
in absolute value.

self-check D
Can a frictionless surface exert a normal force? Can a frictional force
exist without a normal force? . Answer, p. 524

If you try to accelerate or decelerate your car too quickly, the
forces between your wheels and the road become too great, and they
begin slipping. This is not good, because kinetic friction is weaker
than static friction, resulting in less control. Also, if this occurs
while you are turning, the car’s handling changes abruptly because
the kinetic friction force is in a different direction than the static
friction force had been: contrary to the car’s direction of motion,
rather than contrary to the forces applied to the tire.

Most people respond with disbelief when told of the experimen-
tal evidence that both static and kinetic friction are approximately
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independent of the amount of surface area in contact. Even after
doing a hands-on exercise with spring scales to show that it is true,
many students are unwilling to believe their own observations, and
insist that bigger tires “give more traction.” In fact, the main rea-
son why you would not want to put small tires on a big heavy car
is that the tires would burst!

Although many people expect that friction would be propor-
tional to surface area, such a proportionality would make predictions
contrary to many everyday observations. A dog’s feet, for example,
have very little surface area in contact with the ground compared
to a human’s feet, and yet we know that a dog can often win a
tug-of-war with a person.

The reason a smaller surface area does not lead to less friction
is that the force between the two surfaces is more concentrated,
causing their bumps and holes to dig into each other more deeply.

self-check E
Find the direction of each of the forces in figure n. . Answer, p. 524

n / 1. The cliff’s normal force on
the climber’s feet. 2. The track’s
static frictional force on the wheel
of the accelerating dragster. 3.
The ball’s normal force on the
bat.

Locomotives example 4
Looking at a picture of a locomotive, o, we notice two obvious
things that are different from an automobile. Where a car typi-
cally has two drive wheels, a locomotive normally has many —
ten in this example. (Some also have smaller, unpowered wheels
in front of and behind the drive wheels, but this example doesn’t.)
Also, cars these days are generally built to be as light as possi-
ble for their size, whereas locomotives are very massive, and no
effort seems to be made to keep their weight low. (The steam
locomotive in the photo is from about 1900, but this is true even
for modern diesel and electric trains.)
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p / Fluid friction depends on
the fluid’s pattern of flow, so it is
more complicated than friction
between solids, and there are
no simple, universally applicable
formulas to calculate it. From
top to bottom: supersonic wind
tunnel, vortex created by a crop
duster, series of vortices created
by a single object, turbulence.

o / Example 4.

The reason locomotives are built to be so heavy is for traction.
The upward normal force of the rails on the wheels, FN , cancels
the downward force of gravity, FW , so ignoring plus and minus
signs, these two forces are equal in absolute value, FN = FW .
Given this amount of normal force, the maximum force of static
friction is Fs = µsFN = µsFW . This static frictional force, of the
rails pushing forward on the wheels, is the only force that can
accelerate the train, pull it uphill, or cancel out the force of air
resistance while cruising at constant speed. The coefficient of
static friction for steel on steel is about 1/4, so no locomotive can
pull with a force greater than about 1/4 of its own weight. If the
engine is capable of supplying more than that amount of force, the
result will be simply to break static friction and spin the wheels.

The reason this is all so different from the situation with a car is
that a car isn’t pulling something else. If you put extra weight in
a car, you improve the traction, but you also increase the inertia
of the car, and make it just as hard to accelerate. In a train, the
inertia is almost all in the cars being pulled, not in the locomotive.

The other fact we have to explain is the large number of driv-
ing wheels. First, we have to realize that increasing the num-
ber of driving wheels neither increases nor decreases the total
amount of static friction, because static friction is independent of
the amount of surface area in contact. (The reason four-wheel-
drive is good in a car is that if one or more of the wheels is slip-
ping on ice or in mud, the other wheels may still have traction.
This isn’t typically an issue for a train, since all the wheels experi-
ence the same conditions.) The advantage of having more driving
wheels on a train is that it allows us to increase the weight of the
locomotive without crushing the rails, or damaging bridges.

Fluid friction

Try to drive a nail into a waterfall and you will be confronted
with the main difference between solid friction and fluid friction.
Fluid friction is purely kinetic; there is no static fluid friction. The
nail in the waterfall may tend to get dragged along by the water
flowing past it, but it does not stick in the water. The same is true
for gases such as air: recall that we are using the word “fluid” to
include both gases and liquids.
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q / What do the golf ball and
the shark have in common? Both
use the same trick to reduce fluid
friction. The dimples on the golf
ball modify the pattern of flow of
the air around it, counterintuitively
reducing friction. Recent studies
have shown that sharks can
accomplish the same thing by
raising, or “bristling,” the scales
on their skin at high speeds.

r / The wheelbases of the
Hummer H3 and the Toyota Prius
are surprisingly similar, differing
by only 10%. The main difference
in shape is that the Hummer is
much taller and wider. It presents
a much greater cross-sectional
area to the wind, and this is the
main reason that it uses about 2.5
times more gas on the freeway.

Unlike kinetic friction between solids, fluid friction increases
rapidly with velocity. It also depends on the shape of the object,
which is why a fighter jet is more streamlined than a Model T. For
objects of the same shape but different sizes, fluid friction typically
scales up with the cross-sectional area of the object, which is one
of the main reasons that an SUV gets worse mileage on the freeway
than a compact car.

Discussion questions

A A student states that when he tries to push his refrigerator, the
reason it won’t move is because Newton’s third law says there’s an equal
and opposite frictional force pushing back. After all, the static friction force
is equal and opposite to the applied force. How would you convince him
he is wrong?

B Kinetic friction is usually more or less independent of velocity. How-
ever, inexperienced drivers tend to produce a jerk at the last moment of
deceleration when they stop at a stop light. What does this tell you about
the kinetic friction between the brake shoes and the brake drums?

C Some of the following are correct descriptions of types of forces that
could be added on as new branches of the classification tree. Others are
not really types of forces, and still others are not force phenomena at all.
In each case, decide what’s going on, and if appropriate, figure out how
you would incorporate them into the tree.

sticky force makes tape stick to things
opposite force the force that Newton’s third law says relates to ev-

ery force you make
flowing force the force that water carries with it as it flows out of a

hose
surface tension lets insects walk on water
horizontal force a force that is horizontal
motor force the force that a motor makes on the thing it is turning
canceled force a force that is being canceled out by some other

force

5.3 Analysis of forces
Newton’s first and second laws deal with the total of all the forces
exerted on a specific object, so it is very important to be able to
figure out what forces there are. Once you have focused your atten-
tion on one object and listed the forces on it, it is also helpful to
describe all the corresponding forces that must exist according to
Newton’s third law. We refer to this as “analyzing the forces” in
which the object participates.
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A barge example 5
A barge is being pulled to the right along a canal by teams of horses on the shores. Analyze all the forces in
which the barge participates.

force acting on barge force related to it by Newton’s third law
ropes’ normal forces on barge,→ barge’s normal force on ropes,←
water’s fluid friction force on barge,← barge’s fluid friction force on water,→
planet earth’s gravitational force on barge, ↓ barge’s gravitational force on earth, ↑
water’s “floating” force on barge, ↑ barge’s “floating” force on water, ↓

Here I’ve used the word “floating” force as an example of a sensible invented term for a type of force not
classified on the tree on p. 157. A more formal technical term would be “hydrostatic force.”
Note how the pairs of forces are all structured as “A’s force on B, B’s force on A”: ropes on barge and barge
on ropes; water on barge and barge on water. Because all the forces in the left column are forces acting on
the barge, all the forces in the right column are forces being exerted by the barge, which is why each entry in
the column begins with “barge.”

Often you may be unsure whether you have forgotten one of the
forces. Here are three strategies for checking your list:

1. See what physical result would come from the forces you’ve
found so far. Suppose, for instance, that you’d forgotten the
“floating” force on the barge in the example above. Looking
at the forces you’d found, you would have found that there
was a downward gravitational force on the barge which was
not canceled by any upward force. The barge isn’t supposed
to sink, so you know you need to find a fourth, upward force.

2. Another technique for finding missing forces is simply to go
through the list of all the common types of forces and see if
any of them apply.

3. Make a drawing of the object, and draw a dashed boundary
line around it that separates it from its environment. Look for
points on the boundary where other objects come in contact
with your object. This strategy guarantees that you’ll find
every contact force that acts on the object, although it won’t
help you to find non-contact forces.

Section 5.3 Analysis of forces 165



s / Example 6.

Fifi example 6
. Fifi is an industrial espionage dog who loves doing her job and
looks great doing it. She leaps through a window and lands at
initial horizontal speed vo on a conveyor belt which is itself moving
at the greater speed vb. Unfortunately the coefficient of kinetic
friction µk between her foot-pads and the belt is fairly low, so she
skids for a time ∆t , during which the effect on her coiffure are un
désastre. Find ∆t .

. We analyze the forces:

force acting on Fifi force related to it by Newton’s
third law

planet earth’s gravitational
force FW = mg on Fifi, ↓

Fifi’s gravitational force on
earth, ↑

belt’s kinetic frictional force Fk
on Fifi, →

Fifi’s kinetic frictional force on
belt, ←

belt’s normal force FN on Fifi, ↑ Fifi’s normal force on belt, ↓

Checking the analysis of the forces as described on p. 165:

(1) The physical result makes sense. The left-hand column con-
sists of forces ↓→↑. We’re describing the time when she’s moving
horizontally on the belt, so it makes sense that we have two ver-
tical forces that could cancel. The rightward force is what will
accelerate her until her speed matches that of the belt.

(2) We’ve included every relevant type of force from the tree on
p. 157.

(3) We’ve included forces from the belt, which is the only object
in contact with Fifi.

The purpose of the analysis is to let us set up equations contain-
ing enough information to solve the problem. Let positive x be to
the right. Newton’s second law gives

(→) a = Fk/m

Although it’s the horizontal motion we care about, the only way to
find Fk is via the relation Fk = µkFN , and the only way to find FN
is from the ↑↓ forces. If the vertical forces are to cancel, they must
be of equal strength:

(↑↓) FN = mg

Using the constant-acceleration equation a = ∆v/∆t , we have

∆t =
∆v
a

=
vb − vo

µkmg/m

=
vb − vo

µkg
.

166 Chapter 5 Analysis of forces



The units check out:

s =
m/s
m/s2 ,

where µk is omitted as a factor because it’s unitless.

We should also check that the dependence on the variables also
makes sense. If Fifi puts on her rubber ninja booties, increas-
ing µk , then dividing by a larger number gives a smaller result
for ∆t ; this makes sense physically, because the greater friction
will cause her to come up to the belt’s speed more quickly. The
dependence on g is similar; more gravity would press her harder
against the belt, improving her traction. Increasing vb increases
∆t , which makes sense because it will take her longer to get up
to a bigger speed. Since vo is subtracted, the dependence of ∆t
on it is the other way around, and that makes sense too, because
if she can land with a greater speed, she has less speeding up
left to do.

Discussion questions

A In the example of the barge going down the canal, I referred to
a “floating” or “hydrostatic” force that keeps the boat from sinking. If you
were adding a new branch on the force-classification tree to represent this
force, where would it go?

B The earth’s gravitational force on you, i.e., your weight, is always
equal to mg, where m is your mass. So why can you get a shovel to go
deeper into the ground by jumping onto it? Just because you’re jumping,
that doesn’t mean your mass or weight is any greater, does it?

5.4 Transmission of forces by low-mass
objects

You’re walking your dog. The dog wants to go faster than you do,
and the leash is taut. Does Newton’s third law guarantee that your
force on your end of the leash is equal and opposite to the dog’s
force on its end? If they’re not exactly equal, is there any reason
why they should be approximately equal?

If there was no leash between you, and you were in direct contact
with the dog, then Newton’s third law would apply, but Newton’s
third law cannot relate your force on the leash to the dog’s force
on the leash, because that would involve three separate objects.
Newton’s third law only says that your force on the leash is equal
and opposite to the leash’s force on you,

FyL = −FLy,

and that the dog’s force on the leash is equal and opposite to its
force on the dog

FdL = −FLd.
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u / The Golden Gate Bridge’s
roadway is held up by the tension
in the vertical cables.

Still, we have a strong intuitive expectation that whatever force we
make on our end of the leash is transmitted to the dog, and vice-
versa. We can analyze the situation by concentrating on the forces
that act on the leash, FdL and FyL. According to Newton’s second
law, these relate to the leash’s mass and acceleration:

FdL + FyL = mLaL.

The leash is far less massive then any of the other objects involved,
and if mL is very small, then apparently the total force on the leash
is also very small, FdL + FyL ≈ 0, and therefore

FdL ≈ −FyL .

Thus even though Newton’s third law does not apply directly to
these two forces, we can approximate the low-mass leash as if it was
not intervening between you and the dog. It’s at least approximately
as if you and the dog were acting directly on each other, in which
case Newton’s third law would have applied.

In general, low-mass objects can be treated approximately as if
they simply transmitted forces from one object to another. This can
be true for strings, ropes, and cords, and also for rigid objects such
as rods and sticks.

t / If we imagine dividing a taut rope up into small segments, then
any segment has forces pulling outward on it at each end. If the rope
is of negligible mass, then all the forces equal +T or −T , where T , the
tension, is a single number.

If you look at a piece of string under a magnifying glass as you
pull on the ends more and more strongly, you will see the fibers
straightening and becoming taut. Different parts of the string are
apparently exerting forces on each other. For instance, if we think of
the two halves of the string as two objects, then each half is exerting
a force on the other half. If we imagine the string as consisting
of many small parts, then each segment is transmitting a force to
the next segment, and if the string has very little mass, then all
the forces are equal in magnitude. We refer to the magnitude of
the forces as the tension in the string, T . Although the tension
is measured in units of Newtons, it is not itself a force. There are
many forces within the string, some in one direction and some in the
other direction, and their magnitudes are only approximately equal.
The concept of tension only makes sense as a general, approximate
statement of how big all the forces are.
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If a rope goes over a pulley or around some other object, then
the tension throughout the rope is approximately equal so long as
the pulley has negligible mass and there is not too much friction. A
rod or stick can be treated in much the same way as a string, but
it is possible to have either compression or tension.

Since tension is not a type of force, the force exerted by a rope
on some other object must be of some definite type such as static
friction, kinetic friction, or a normal force. If you hold your dog’s
leash with your hand through the loop, then the force exerted by the
leash on your hand is a normal force: it is the force that keeps the
leash from occupying the same space as your hand. If you grasp a
plain end of a rope, then the force between the rope and your hand
is a frictional force.

A more complex example of transmission of forces is the way
a car accelerates. Many people would describe the car’s engine as
making the force that accelerates the car, but the engine is part of
the car, so that’s impossible: objects can’t make forces on them-
selves. What really happens is that the engine’s force is transmitted
through the transmission to the axles, then through the tires to the
road. By Newton’s third law, there will thus be a forward force from
the road on the tires, which accelerates the car.

Discussion question

A When you step on the gas pedal, is your foot’s force being transmitted
in the sense of the word used in this section?

5.5 Objects under strain
A string lengthens slightly when you stretch it. Similarly, we have
already discussed how an apparently rigid object such as a wall is
actually flexing when it participates in a normal force. In other
cases, the effect is more obvious. A spring or a rubber band visibly
elongates when stretched.

Common to all these examples is a change in shape of some kind:
lengthening, bending, compressing, etc. The change in shape can
be measured by picking some part of the object and measuring its
position, x. For concreteness, let’s imagine a spring with one end
attached to a wall. When no force is exerted, the unfixed end of the
spring is at some position xo. If a force acts at the unfixed end, its
position will change to some new value of x. The more force, the
greater the departure of x from xo.

Back in Newton’s time, experiments like this were considered
cutting-edge research, and his contemporary Hooke is remembered
today for doing them and for coming up with a simple mathematical
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v / Defining the quantities F , x ,
and xo in Hooke’s law.

generalization called Hooke’s law:

F ≈ k(x− xo) . [force required to stretch a spring; valid

for small forces only]

Here k is a constant, called the spring constant, that depends on
how stiff the object is. If too much force is applied, the spring
exhibits more complicated behavior, so the equation is only a good
approximation if the force is sufficiently small. Usually when the
force is so large that Hooke’s law is a bad approximation, the force
ends up permanently bending or breaking the spring.

Although Hooke’s law may seem like a piece of trivia about
springs, it is actually far more important than that, because all
solid objects exert Hooke’s-law behavior over some range of suffi-
ciently small forces. For example, if you push down on the hood of
a car, it dips by an amount that is directly proportional to the force.
(But the car’s behavior would not be as mathematically simple if
you dropped a boulder on the hood!)

. Solved problem: Combining springs page 183, problem 26

. Solved problem: Young’s modulus page 183, problem 28

Discussion question

A A car is connected to its axles through big, stiff springs called shock
absorbers, or “shocks.” Although we’ve discussed Hooke’s law above only
in the case of stretching a spring, a car’s shocks are continually going
through both stretching and compression. In this situation, how would
you interpret the positive and negative signs in Hooke’s law?

5.6 Simple machines: the pulley
Even the most complex machines, such as cars or pianos, are built
out of certain basic units called simple machines. The following are
some of the main functions of simple machines:
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transmitting a force: The chain on a bicycle transmits a force
from the crank set to the rear wheel.

changing the direction of a force: If you push down on a see-
saw, the other end goes up.

changing the speed and precision of motion: When you make
the “come here” motion, your biceps only moves a couple of
centimeters where it attaches to your forearm, but your arm
moves much farther and more rapidly.

changing the amount of force: A lever or pulley can be used
to increase or decrease the amount of force.

You are now prepared to understand one-dimensional simple ma-
chines, of which the pulley is the main example.

w / Example 7.

A pulley example 7
. Farmer Bill says this pulley arrangement doubles the force of
his tractor. Is he just a dumb hayseed, or does he know what he’s
doing?

. To use Newton’s first law, we need to pick an object and con-
sider the sum of the forces on it. Since our goal is to relate the
tension in the part of the cable attached to the stump to the ten-
sion in the part attached to the tractor, we should pick an object
to which both those cables are attached, i.e., the pulley itself. The
tension in a string or cable remains approximately constant as it
passes around an idealized pulley. 1 There are therefore two left-
ward forces acting on the pulley, each equal to the force exerted
by the tractor. Since the acceleration of the pulley is essentially
zero, the forces on it must be canceling out, so the rightward force
of the pulley-stump cable on the pulley must be double the force
exerted by the tractor. Yes, Farmer Bill knows what he’s talking
about.

More complicated pulley systems can be constructed to give
greater amplification of forces or to redirect forces in different direc-

1This was asserted in section 5.4 without proof. Essentially it holds because
of symmetry. E.g., if the U-shaped piece of rope in figure w had unequal tension
in its two legs, then this would have to be caused by some asymmetry between
clockwise and counterclockwise rotation. But such an asymmetry can only be
caused by friction or inertia, which we assume don’t exist.
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x / Example 8.

tions. For an idealized system,2 the fundamental principles are:

1. The total force acting on any pulley is zero.3

2. The tension in any given piece of rope is constant throughout
its length.

3. The length of every piece of rope remains the same.

A compound pulley example 8
. Find the mechanical advantage T5/F of the pulley system. The
bar is massless.

. By rule 2, T1 = T2, and by rule 1, F = T1 + T2, so T1 = T2 = F/2.
Similarly, T3 = T4 = F/4. Since the bar is massless, the same
reasoning that led to rule 1 applies to the bar as well, and T5 =
T1 +T3. The mechanical advantage is T5/F = 3/4, i.e., this pulley
system reduces the input force.

How far does the tractor go compared to the stump? example 9
. To move the stump in figure w by 1 cm, how far must the tractor
move?

. Applying rule 3 to the the right-hand piece of rope, we find that
the pulley moves 1 cm. The upper leg of the U-shaped rope there-
fore shortens by 1 cm, so the lower leg must lengthen by 1 cm.
Since the pulley moves 1 cm to the left, and the lower leg extend-
ing from it also lengths by 1 cm, the tractor must move 2 cm.

Examples 7 and 9 showed that the pulley system in figure w
amplifies the force by a factor of 2, but it reduces the motion by
1/2. This is an example of a more general inverse proportionality
for all such systems. Superficially, it follows from rules 1-3 above.
If, for example, we try to construct a pulley system that doubles the
force while keeping the motion the same, we will find that the rules
seem to mysteriously conspire against us, and every attempt ends
in failure. We could in fact prove as a mathematical theorem that
the inverse proportionality always holds if we assume these rules.

But these rules are only an idealized mathematical model of a
specific type of simple machine. What about other machines built
out of other parts such as levers, screws, or gears? Through trial and
error we will find that the inverse proportionality holds for them as
well, so there must be some more fundamental principles involved.
These principles, which we won’t discuss formally until ch. 11 and
13, are conservation of energy and the equation for mechanical work.
Informally, imagine that we had a machine that violated this rule.
We could then insert it into a setup like the one in figure y. When

2In such a system: (1) The ropes and pulleys have negligible mass. (2)
Friction in the pulleys’ bearings is negligible. (3) The ropes don’t stretch.

3F = ma, and m = 0 since the pulley’s mass is assumed to be negligible.
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y / The black box marked with
an X is a machine that doubles
force while leaving the amount
of motion unchanged. If 1 cm
of rope is pulled out through the
input on the bottom at tension T ,
the amount of rope consumed at
tension 2T on top is not 1/2 cm,
as we would normally expect, but
1 cm. This machine is impossible.

we release the single weight at the top, it drops to the ground while
lifting the pan, which holds double the weight, all the way to the
top. This is the ultimate free lunch. Once the pair of weights is up
at the top, we can use them to hoist four more, then 8, 16, and so
on. This is known as a perpetual motion machine.

If this seems to be too good to be true, it is. Just as small
machines can be put together to make bigger ones, any machine can
also be broken down into smaller and smaller ones. This process
can be continued until we get down to the level of atoms. The law
of conservation of energy essentially says that atoms don’t act like
perpetual motion machines, and therefore any machine built out of
atoms also fails to be a perpetual motion machine.
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z / Ernst Mach (1838-1916)
is mainly known for having pro-
posed a radical extension of the
principle of inertia to state that all
motion, not just constant-velocity
motion, was relative. His ideas
strongly influenced Einstein. The
Mach factor (used, e.g., when
we describe a jet as traveling at
“Mach 2”) is named after him.

5.7 ? Does Newton’s third law mean anything,
and if so, is it true?

This section discusses Newton’s third law in the same spirit as sec-
tion 4.7 on the first and second laws.

Ernst Mach gave a cogent critique of the third laws’s logical
assumptions in his book The Science of Mechanics. The book is
available online for free at archive.org, and is very readable. To
understand Mach’s criticism, consider the experiment illustrated in
figure a on p. 152, in which a large magnet and a small magnet
are found to exert equal forces on one another. I use this as a
student lab, and I find that most students are surprised by the
result. Nevertheless, the lab can be considered a swindle, for the
following reason. If we wanted to, we could cut the large magnet
apart into smaller pieces, each of which was the same size as the
small magnet. In fact, the large magnets I use for this lab were
constructed simply by taking six small ones, stacking them together,
and wrapping them in plastic. To represent this symbolically, let the
small magnet be [A] and the large one [BCDEFG]. Since A and B are
identical, and they are oriented in the same way, it follows simply
by symmetry that A’s force on B and B’s on A obey the third law.
The same holds for A on C and C on A, and so on. Since Newton
claims that forces combine by addition, it follows that the result of
the experiment must be in accord with the third law, despite the
superficial asymmetry.

Now suppose that material objects 1 and 2 have the same chem-
ical composition. By a similar argument it seems likely that F12 and
F21 obey Newton’s third law.

This argument shows how pointless it can be to attempt to test
a scientific theory unless you have in your possession a sensible al-
ternative theory that predicts something different. One could spend
decades doing experiments of the kind described above without real-
izing that the tests were all trivially guaranteed to give null results,
even if nature was really described by a theory that violated New-
ton’s third law.

Here is an example of a fairly sane theory that could violate
Newton’s third law. Einstein’s famous E = mc2 states that a certain
amount of energy E is equivalent to a certain amount of mass m,
with c being the speed of light. (We won’t formally encounter energy
until ch. 11, or the reasons for E = mc2 until section 12.4, but for
now just think of energy as the kind of thing you intuitively associate
with food calories or a tank full of gasoline, and take E = mc2 for
granted.) Einstein claimed that this would hold for three different
kinds of mass: the mass measured by an object’s inertia, the “active”
gravitational mass ma that determines the gravitational forces it
makes on other objects, and the “passive” gravitational mass mp
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aa / 1. A balance that mea-
sures the gravitational attraction
between masses M and m. (See
section 10.5 for a more detailed
description.) When the two
masses M are inserted, the fiber
twists. 2. A simplified diagram
of Kreuzer’s modification. The
moving teflon mass is submerged
in a liquid with nearly the same
density. 3. Kreuzer’s actual
apparatus.

that measures how strongly it feels gravity. Einstein’s reason for
predicting similar behavior for ma and mp was that anything else
would have violated Newton’s third law for gravitational forces.

Suppose instead that an object’s energy content contributes only
to mp, not to ma. Atomic nuclei get something like 1% of their
mass from the energy of the electric fields inside their nuclei, but
this percentage varies with the number of protons, so if we have
objects m and M with different chemical compositions, it follows
that in this theory mp/ma will not be the same as Mp/Ma, and
in this non-Einsteinian version of relativity, Newton’s third law is
violated.

This was tested in a Princeton PhD-thesis experiment by Kreuzer4

in 1966. Kreuzer carried out an experiment, figure aa, using masses
made of two different substances. The first substance was teflon.
The second substance was a mixture of the liquids trichloroethy-
lene and dibromoethane, with the proportions chosen so as to give
a passive-mass density as close as possible to that of teflon, as de-
termined by the neutral buoyancy of the teflon masses suspended
inside the liquid. If the active-mass densities of these substances are
not strictly proportional to their passive-mass densities, then mov-
ing the chunk of teflon back and forth in figure aa/2 would change
the gravitational force acting on the nearby small sphere. No such
change was observed, and the results verified mp/ma = Mp/Ma to
within one part in 106, in agreement with Einstein and Newton. If
electrical energy had not contributed at all to active mass, then a
violation of the third law would have been detected at the level of
about one part in 102.

The Kreuzer result was improved in 1986 by Bartlett and van
Buren5 using lunar laser ranging data similar to those described in
section 4.7. Since the moon has an asymmetrical distribution of iron
and aluminum, a theory with mp/ma 6= Mp/Ma would cause it to
have an anomalous acceleration along a certain line. The lack of
any such observed acceleration limits violations of Newton’s third
law to about one part in 1010.

4Kreuzer, Phys. Rev. 169 (1968) 1007
5Phys. Rev. Lett. 57 (1986) 21
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Summary
Selected vocabulary
repulsive . . . . . describes a force that tends to push the two

participating objects apart
attractive . . . . describes a force that tends to pull the two

participating objects together
oblique . . . . . . describes a force that acts at some other angle,

one that is not a direct repulsion or attraction
normal force . . . the force that keeps two objects from occupy-

ing the same space
static friction . . a friction force between surfaces that are not

slipping past each other
kinetic friction . a friction force between surfaces that are slip-

ping past each other
fluid . . . . . . . . a gas or a liquid
fluid friction . . . a friction force in which at least one of the

object is is a fluid
spring constant . the constant of proportionality between force

and elongation of a spring or other object un-
der strain

Notation
FN . . . . . . . . . a normal force
Fs . . . . . . . . . a static frictional force
Fk . . . . . . . . . a kinetic frictional force
µs . . . . . . . . . the coefficient of static friction; the constant of

proportionality between the maximum static
frictional force and the normal force; depends
on what types of surfaces are involved

µk . . . . . . . . . the coefficient of kinetic friction; the constant
of proportionality between the kinetic fric-
tional force and the normal force; depends on
what types of surfaces are involved

k . . . . . . . . . . the spring constant; the constant of propor-
tionality between the force exerted on an ob-
ject and the amount by which the object is
lengthened or compressed

Summary

Newton’s third law states that forces occur in equal and opposite
pairs. If object A exerts a force on object B, then object B must
simultaneously be exerting an equal and opposite force on object A.
Each instance of Newton’s third law involves exactly two objects,
and exactly two forces, which are of the same type.

There are two systems for classifying forces. We are presently
using the more practical but less fundamental one. In this system,
forces are classified by whether they are repulsive, attractive, or
oblique; whether they are contact or noncontact forces; and whether
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the two objects involved are solids or fluids.

Static friction adjusts itself to match the force that is trying to
make the surfaces slide past each other, until the maximum value is
reached,

Fs,max = µsFN .

Once this force is exceeded, the surfaces slip past one another, and
kinetic friction applies,

Fk = µkFN .

Both types of frictional force are nearly independent of surface area,
and kinetic friction is usually approximately independent of the
speed at which the surfaces are slipping. The direction of the force
is in the direction that would tend to stop or prevent slipping.

A good first step in applying Newton’s laws of motion to any
physical situation is to pick an object of interest, and then to list
all the forces acting on that object. We classify each force by its
type, and find its Newton’s-third-law partner, which is exerted by
the object on some other object.

When two objects are connected by a third low-mass object,
their forces are transmitted to each other nearly unchanged.

Objects under strain always obey Hooke’s law to a good approx-
imation, as long as the force is small. Hooke’s law states that the
stretching or compression of the object is proportional to the force
exerted on it,

F ≈ k(x− xo) .
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Problem 6.

Problem 8.

Problem 9.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In each case, identify the force that causes the acceleration,
and give its Newton’s-third-law partner. Describe the effect of the
partner force. (a) A swimmer speeds up. (b) A golfer hits the ball
off of the tee. (c) An archer fires an arrow. (d) A locomotive slows
down. . Solution, p. 514

2 Example 2 on page 155 involves a person pushing a box up a
hill. The incorrect answer describes three forces. For each of these
three forces, give the force that it is related to by Newton’s third
law, and state the type of force. . Solution, p. 514

3 (a) Compare the mass of a one-liter water bottle on earth, on
the moon, and in interstellar space. . Solution, p. 514
(b) Do the same for its weight.

In problems 4-8, analyze the forces using a table in the format shown
in section 5.3. Analyze the forces in which the italicized object par-
ticipates.

4 Some people put a spare car key in a little magnetic box that
they stick under the chassis of their car. Let’s say that the box is
stuck directly underneath a horizontal surface, and the car is parked.
(See instructions above.)

5 Analyze two examples of objects at rest relative to the earth
that are being kept from falling by forces other than the normal
force. Do not use objects in outer space, and do not duplicate
problem 4 or 8. (See instructions above.)

6 A person is rowing a boat, with her feet braced. She is doing
the part of the stroke that propels the boat, with the ends of the
oars in the water (not the part where the oars are out of the water).
(See instructions above.)

7 A farmer is in a stall with a cow when the cow decides to press
him against the wall, pinning him with his feet off the ground. An-
alyze the forces in which the farmer participates. (See instructions
above.)

8 A propeller plane is cruising east at constant speed and alti-
tude. (See instructions above.)

9 A little old lady and a pro football player collide head-on.
Compare their forces on each other, and compare their accelerations.
Explain.
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Problem 12.

10 The earth is attracted to an object with a force equal and
opposite to the force of the earth on the object. If this is true,
why is it that when you drop an object, the earth does not have an
acceleration equal and opposite to that of the object?

11 When you stand still, there are two forces acting on you,
the force of gravity (your weight) and the normal force of the floor
pushing up on your feet. Are these forces equal and opposite? Does
Newton’s third law relate them to each other? Explain.

12 Today’s tallest buildings are really not that much taller than
the tallest buildings of the 1940’s. One big problem with making an
even taller skyscraper is that every elevator needs its own shaft run-
ning the whole height of the building. So many elevators are needed
to serve the building’s thousands of occupants that the elevator
shafts start taking up too much of the space within the building.
An alternative is to have elevators that can move both horizontally
and vertically: with such a design, many elevator cars can share a
few shafts, and they don’t get in each other’s way too much because
they can detour around each other. In this design, it becomes im-
possible to hang the cars from cables, so they would instead have to
ride on rails which they grab onto with wheels. Friction would keep
them from slipping. The figure shows such a frictional elevator in
its vertical travel mode. (The wheels on the bottom are for when it
needs to switch to horizontal motion.)
(a) If the coefficient of static friction between rubber and steel is
µs, and the maximum mass of the car plus its passengers is M ,
how much force must there be pressing each wheel against the rail
in order to keep the car from slipping? (Assume the car is not
accelerating.)

√

(b) Show that your result has physically reasonable behavior with
respect to µs. In other words, if there was less friction, would the
wheels need to be pressed more firmly or less firmly? Does your
equation behave that way?

13 An ice skater builds up some speed, and then coasts across
the ice passively in a straight line. (a) Analyze the forces, using a
table the format shown in section 5.3.
(b) If his initial speed is v, and the coefficient of kinetic friction is µk,
find the maximum theoretical distance he can glide before coming
to a stop. Ignore air resistance.

√

(c) Show that your answer to part b has the right units.
(d) Show that your answer to part b depends on the variables in a
way that makes sense physically.
(e) Evaluate your answer numerically for µk = 0.0046, and a world-
record speed of 14.58 m/s. (The coefficient of friction was measured
by De Koning et al., using special skates worn by real speed skaters.)√

(f) Comment on whether your answer in part e seems realistic. If it
doesn’t, suggest possible reasons why.
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14 A cop investigating the scene of an accident measures the
length L of a car’s skid marks in order to find out its speed v at
the beginning of the skid. Express v in terms of L and any other
relevant variables.

√

15 Someone tells you she knows of a certain type of Central
American earthworm whose skin, when rubbed on polished dia-
mond, has µk > µs. Why is this not just empirically unlikely but
logically suspect?

16 When I cook rice, some of the dry grains always stick to the
measuring cup. To get them out, I turn the measuring cup upside-
down and hit the “roof” with my hand so that the grains come off of
the “ceiling.” (a) Explain why static friction is irrelevant here. (b)
Explain why gravity is negligible. (c) Explain why hitting the cup
works, and why its success depends on hitting the cup hard enough.

17 Pick up a heavy object such as a backpack or a chair, and
stand on a bathroom scale. Shake the object up and down. What
do you observe? Interpret your observations in terms of Newton’s
third law.

18 The following reasoning leads to an apparent paradox; explain
what’s wrong with the logic. A baseball player hits a ball. The ball
and the bat spend a fraction of a second in contact. During that
time they’re moving together, so their accelerations must be equal.
Newton’s third law says that their forces on each other are also
equal. But a = F/m, so how can this be, since their masses are
unequal? (Note that the paradox isn’t resolved by considering the
force of the batter’s hands on the bat. Not only is this force very
small compared to the ball-bat force, but the batter could have just
thrown the bat at the ball.)

19 A tugboat of mass m pulls a ship of mass M , accelerating it.
The speeds are low enough that you can ignore fluid friction acting
on their hulls, although there will of course need to be fluid friction
acting on the tug’s propellers.
(a) Analyze the forces in which the tugboat participates, using a
table in the format shown in section 5.3. Don’t worry about vertical
forces.
(b) Do the same for the ship.
(c) If the force acting on the tug’s propeller is F , what is the tension,
T , in the cable connecting the two ships? [Hint: Write down two
equations, one for Newton’s second law applied to each object. Solve
these for the two unknowns T and a.]

√

(d) Interpret your answer in the special cases of M = 0 and M =∞.
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Problem 20.

Problem 21

20 Unequal masses M and m are suspended from a pulley as
shown in the figure.
(a) Analyze the forces in which mass m participates, using a table
the format shown in section 5.3. [The forces in which the other mass
participates will of course be similar, but not numerically the same.]
(b) Find the magnitude of the accelerations of the two masses.
[Hints: (1) Pick a coordinate system, and use positive and nega-
tive signs consistently to indicate the directions of the forces and
accelerations. (2) The two accelerations of the two masses have to
be equal in magnitude but of opposite signs, since one side eats up
rope at the same rate at which the other side pays it out. (3) You
need to apply Newton’s second law twice, once to each mass, and
then solve the two equations for the unknowns: the acceleration, a,
and the tension in the rope, T .]

√

(c) Many people expect that in the special case of M = m, the two
masses will naturally settle down to an equilibrium position side by
side. Based on your answer from part b, is this correct?
(d) Find the tension in the rope, T .

√

(e) Interpret your equation from part d in the special case where one
of the masses is zero. Here “interpret” means to figure out what hap-
pens mathematically, figure out what should happen physically, and
connect the two.

21 The figure shows a stack of two blocks, sitting on top of a table
that is bolted to the floor. All three objects are made from iden-
tical wood, with their surfaces finished identically using the same
sandpaper. We tap the middle block, giving it an initial velocity v
to the right. The tap is executed so rapidly that almost no initial
velocity is imparted to the top block.
(a) Find the time that will elapse until the slipping between the top
and middle blocks stops. Express your answer in terms of v, m, M ,
g, and the relevant coefficient of friction.

√

(b) Show that your answer makes sense in terms of units.
(c) Check that your result has the correct behavior when you make
m bigger or smaller. Explain. This means that you should discuss
the mathematical behavior of the result, and then explain how this
corresponds to what would really happen physically.
(d) Similarly, discuss what happens when you make M bigger or
smaller.
(e) Similarly, discuss what happens when you make g bigger or
smaller.
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Problem 22.

Problem 23.

Problem 24.

22 Mountain climbers with masses m and M are roped together
while crossing a horizontal glacier when a vertical crevasse opens up
under the climber with mass M . The climber with mass m drops
down on the snow and tries to stop by digging into the snow with
the pick of an ice ax. Alas, this story does not have a happy ending,
because this doesn’t provide enough friction to stop. Both m and M
continue accelerating, with M dropping down into the crevasse and
m being dragged across the snow, slowed only by the kinetic friction
with coefficient µk acting between the ax and the snow. There is no
significant friction between the rope and the lip of the crevasse.
(a) Find the acceleration a.

√

(b) Check the units of your result.
(c) Check the dependence of your equation on the variables. That
means that for each variable, you should determine what its effect
on a should be physically, and then what your answer from part a
says its effect would be mathematically.

23 Ginny has a plan. She is going to ride her sled while her dog
Foo pulls her, and she holds on to his leash. However, Ginny hasn’t
taken physics, so there may be a problem: she may slide right off
the sled when Foo starts pulling.
(a) Analyze all the forces in which Ginny participates, making a
table as in section 5.3.
(b) Analyze all the forces in which the sled participates.
(c) The sled has mass m, and Ginny has mass M . The coefficient
of static friction between the sled and the snow is µ1, and µ2 is
the corresponding quantity for static friction between the sled and
her snow pants. Ginny must have a certain minimum mass so that
she will not slip off the sled. Find this in terms of the other three
variables.

√

(d) Interpreting your equation from part c, under what conditions
will there be no physically realistic solution for M? Discuss what
this means physically.

24 In the system shown in the figure, the pulleys on the left and
right are fixed, but the pulley in the center can move to the left or
right. The two masses are identical. Find the upward acceleration
of the mass on the left, in terms of g only. Assume all the ropes
and pulleys are massless and frictionless. Hints: (1) Use rules 1-3
on p. 172. (2) The approach is similar to the one in problem 20, but
the ratio of the accelerations isn’t 1:1.

√

25 Example 7 on page 171 describes a force-doubling setup
involving a pulley. Make up a more complicated arrangement, using
two pulleys, that would multiply the force by four. The basic idea
is to take the output of one force doubler and feed it into the input
of a second one.
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Problem 26.

Problem 29.

26 The figure shows two different ways of combining a pair of
identical springs, each with spring constant k. We refer to the top
setup as parallel, and the bottom one as a series arrangement.
(a) For the parallel arrangement, analyze the forces acting on the
connector piece on the left, and then use this analysis to determine
the equivalent spring constant of the whole setup. Explain whether
the combined spring constant should be interpreted as being stiffer
or less stiff.
(b) For the series arrangement, analyze the forces acting on each
spring and figure out the same things. . Solution, p. 514

27 Generalize the results of problem 26 to the case where the
two spring constants are unequal.

28 (a) Using the solution of problem 26, which is given in the
back of the book, predict how the spring constant of a fiber will
depend on its length and cross-sectional area.
(b) The constant of proportionality is called the Young’s modulus,
E, and typical values of the Young’s modulus are about 1010 to
1011. What units would the Young’s modulus have in the SI (meter-
kilogram-second) system? . Solution, p. 515

29 This problem depends on the results of problems 26 and
28, whose solutions are in the back of the book. When atoms form
chemical bonds, it makes sense to talk about the spring constant of
the bond as a measure of how “stiff” it is. Of course, there aren’t
really little springs — this is just a mechanical model. The purpose
of this problem is to estimate the spring constant, k, for a single
bond in a typical piece of solid matter. Suppose we have a fiber,
like a hair or a piece of fishing line, and imagine for simplicity that
it is made of atoms of a single element stacked in a cubical manner,
as shown in the figure, with a center-to-center spacing b. A typical
value for b would be about 10−10 m.
(a) Find an equation for k in terms of b, and in terms of the Young’s
modulus, E, defined in problem 16 and its solution.
(b) Estimate k using the numerical data given in problem 28.
(c) Suppose you could grab one of the atoms in a diatomic molecule
like H2 or O2, and let the other atom hang vertically below it. Does
the bond stretch by any appreciable fraction due to gravity?
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Problem 31.

Problem 32.

30 A cross-country skier is gliding on a level trail, with negligi-
ble friction. Then, when he is at position x = 0, the tip of his skis
enters a patch of dirt. As he rides onto the dirt, more and more of
his weight is being supported by the dirt. The skis have length `,
so if he reached x = ` without stopping, his weight would be com-
pletely on the dirt. This problem deals with the motion for x < `.
(a) Find the acceleration in terms of x, as well as any other relevant
constants.
(b) This is a second-order differential equation. You should be able
to find the solution simply by thinking about some commonly oc-
curing functions that you know about, and finding two that have
the right properties. If these functions are x = f(t) and x = g(t),
then the most general solution to the equations of motion will be of
the form x = af + bg, where a and b are constants to be determined
from the initial conditions.
(c) Suppose that the initial velocity vo at x = 0 is such that he stops
at x < `. Find the time until he stops, and show that, counterintu-
itively, this time is independent of vo. Explain physically why this
is true.

√

?

31 The two masses are identical. Find the upward acceleration
of the mass on the right, in terms of g only. Assume all the ropes
and pulleys, as well as the cross-bar, are massless, and the pulleys
are frictionless. The right-hand mass has been positioned away from
the bar’s center, so that the bar will not twist. Hints: (1) Use rules
1-3 on p. 172. (2) The approach is similar to the one in problem 20,
but the ratio of the accelerations isn’t 1:1.

√

32 Find the upward acceleration of m1.
√

?
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Motion in three
dimensions

185





Chapter 6

Newton’s laws in three
dimensions

6.1 Forces have no perpendicular effects
Suppose you could shoot a rifle and arrange for a second bullet to
be dropped from the same height at the exact moment when the
first left the barrel. Which would hit the ground first? Nearly
everyone expects that the dropped bullet will reach the dirt first,
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and Aristotle would have agreed. Aristotle would have described it
like this. The shot bullet receives some forced motion from the gun.
It travels forward for a split second, slowing down rapidly because
there is no longer any force to make it continue in motion. Once
it is done with its forced motion, it changes to natural motion, i.e.
falling straight down. While the shot bullet is slowing down, the
dropped bullet gets on with the business of falling, so according to
Aristotle it will hit the ground first.

a / A bullet is shot from a gun, and another bullet is simultaneously dropped from the same height. 1.
Aristotelian physics says that the horizontal motion of the shot bullet delays the onset of falling, so the dropped
bullet hits the ground first. 2. Newtonian physics says the two bullets have the same vertical motion, regardless
of their different horizontal motions.

Luckily, nature isn’t as complicated as Aristotle thought! To
convince yourself that Aristotle’s ideas were wrong and needlessly
complex, stand up now and try this experiment. Take your keys
out of your pocket, and begin walking briskly forward. Without
speeding up or slowing down, release your keys and let them fall
while you continue walking at the same pace.

You have found that your keys hit the ground right next to your
feet. Their horizontal motion never slowed down at all, and the
whole time they were dropping, they were right next to you. The
horizontal motion and the vertical motion happen at the same time,
and they are independent of each other. Your experiment proves
that the horizontal motion is unaffected by the vertical motion, but
it’s also true that the vertical motion is not changed in any way by
the horizontal motion. The keys take exactly the same amount of
time to get to the ground as they would have if you simply dropped
them, and the same is true of the bullets: both bullets hit the ground
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simultaneously.

These have been our first examples of motion in more than one
dimension, and they illustrate the most important new idea that
is required to understand the three-dimensional generalization of
Newtonian physics:

Forces have no perpendicular effects.
When a force acts on an object, it has no effect on the part of the
object’s motion that is perpendicular to the force.

In the examples above, the vertical force of gravity had no effect
on the horizontal motions of the objects. These were examples of
projectile motion, which interested people like Galileo because of
its military applications. The principle is more general than that,
however. For instance, if a rolling ball is initially heading straight
for a wall, but a steady wind begins blowing from the side, the ball
does not take any longer to get to the wall. In the case of projectile
motion, the force involved is gravity, so we can say more specifically
that the vertical acceleration is 9.8 m/s2, regardless of the horizontal
motion.

self-check A
In the example of the ball being blown sideways, why doesn’t the ball
take longer to get there, since it has to travel a greater distance? .

Answer, p. 525

Relationship to relative motion

These concepts are directly related to the idea that motion is rel-
ative. Galileo’s opponents argued that the earth could not possibly
be rotating as he claimed, because then if you jumped straight up in
the air you wouldn’t be able to come down in the same place. Their
argument was based on their incorrect Aristotelian assumption that
once the force of gravity began to act on you and bring you back
down, your horizontal motion would stop. In the correct Newtonian
theory, the earth’s downward gravitational force is acting before,
during, and after your jump, but has no effect on your motion in
the perpendicular (horizontal) direction.

If Aristotle had been correct, then we would have a handy way
to determine absolute motion and absolute rest: jump straight up
in the air, and if you land back where you started, the surface from
which you jumped must have been in a state of rest. In reality, this
test gives the same result as long as the surface under you is an
inertial frame. If you try this in a jet plane, you land back on the
same spot on the deck from which you started, regardless of whether
the plane is flying at 500 miles per hour or parked on the runway.
The method would in fact only be good for detecting whether the
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c / The shadow on the wall
shows the ball’s y motion, the
shadow on the floor its x motion.

plane was accelerating.

Discussion questions

A The following is an incorrect explanation of a fact about target
shooting:

“Shooting a high-powered rifle with a high muzzle velocity is different from
shooting a less powerful gun. With a less powerful gun, you have to aim
quite a bit above your target, but with a more powerful one you don’t have
to aim so high because the bullet doesn’t drop as fast.”

Explain why it’s incorrect. What is the correct explanation?

B You have thrown a rock, and it is flying through the air in an arc. If
the earth’s gravitational force on it is always straight down, why doesn’t it
just go straight down once it leaves your hand?

C Consider the example of the bullet that is dropped at the same
moment another bullet is fired from a gun. What would the motion of the
two bullets look like to a jet pilot flying alongside in the same direction as
the shot bullet and at the same horizontal speed?

6.2 Coordinates and components
’Cause we’re all
Bold as love,
Just ask the axis.

Jimi Hendrix

How do we convert these ideas into mathematics? Figure b shows
a good way of connecting the intuitive ideas to the numbers. In one
dimension, we impose a number line with an x coordinate on a
certain stretch of space. In two dimensions, we imagine a grid of
squares which we label with x and y values, as shown in figure b.

But of course motion doesn’t really occur in a series of discrete
hops like in chess or checkers. Figure c shows a way of conceptual-
izing the smooth variation of the x and y coordinates. The ball’s
shadow on the wall moves along a line, and we describe its position
with a single coordinate, y, its height above the floor. The wall
shadow has a constant acceleration of -9.8 m/s2. A shadow on the
floor, made by a second light source, also moves along a line, and we
describe its motion with an x coordinate, measured from the wall.
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b / This object experiences a force that pulls it down toward the
bottom of the page. In each equal time interval, it moves three units to
the right. At the same time, its vertical motion is making a simple pattern
of +1, 0, −1, −2, −3, −4, . . . units. Its motion can be described by an x
coordinate that has zero acceleration and a y coordinate with constant
acceleration. The arrows labeled x and y serve to explain that we are
defining increasing x to the right and increasing y as upward.

The velocity of the floor shadow is referred to as the x component
of the velocity, written vx. Similarly we can notate the acceleration
of the floor shadow as ax. Since vx is constant, ax is zero.

Similarly, the velocity of the wall shadow is called vy, its accel-
eration ay. This example has ay = −9.8 m/s2.

Because the earth’s gravitational force on the ball is acting along
the y axis, we say that the force has a negative y component, Fy,
but Fx = Fz = 0.

The general idea is that we imagine two observers, each of whom
perceives the entire universe as if it was flattened down to a single
line. The y-observer, for instance, perceives y, vy, and ay, and will
infer that there is a force, Fy, acting downward on the ball. That
is, a y component means the aspect of a physical phenomenon, such
as velocity, acceleration, or force, that is observable to someone who
can only see motion along the y axis.

All of this can easily be generalized to three dimensions. In the
example above, there could be a z-observer who only sees motion
toward or away from the back wall of the room.
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d / Example 1.

A car going over a cliff example 1
. The police find a car at a distance w = 20 m from the base of a
cliff of height h = 100 m. How fast was the car going when it went
over the edge? Solve the problem symbolically first, then plug in
the numbers.

. Let’s choose y pointing up and x pointing away from the cliff.
The car’s vertical motion was independent of its horizontal mo-
tion, so we know it had a constant vertical acceleration of a =
−g = −9.8 m/s2. The time it spent in the air is therefore related
to the vertical distance it fell by the constant-acceleration equa-
tion

∆y =
1
2

ay∆t2 ,

or

−h =
1
2

(−g)∆t2 .

Solving for ∆t gives

∆t =

√
2h
g

.

Since the vertical force had no effect on the car’s horizontal mo-
tion, it had ax = 0, i.e., constant horizontal velocity. We can apply
the constant-velocity equation

vx =
∆x
∆t

,

i.e.,

vx =
w
∆t

.

We now substitute for ∆t to find

vx = w/

√
2h
g

,

which simplifies to

vx = w
√

g
2h

.

Plugging in numbers, we find that the car’s speed when it went
over the edge was 4 m/s, or about 10 mi/hr.
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e / A parabola can be defined as
the shape made by cutting a cone
parallel to its side. A parabola is
also the graph of an equation of
the form y ∝ x2.

f / Each water droplet follows
a parabola. The faster drops’
parabolas are bigger.

Projectiles move along parabolas.

What type of mathematical curve does a projectile follow through
space? To find out, we must relate x to y, eliminating t. The rea-
soning is very similar to that used in the example above. Arbitrarily
choosing x = y = t = 0 to be at the top of the arc, we conveniently
have x = ∆x, y = ∆y, and t = ∆t, so

y =
1

2
ayt

2 (ay < 0)

x = vxt

We solve the second equation for t = x/vx and eliminate t in the
first equation:

y =
1

2
ay

(
x

vx

)2

.

Since everything in this equation is a constant except for x and y,
we conclude that y is proportional to the square of x. As you may
or may not recall from a math class, y ∝ x2 describes a parabola.

Discussion question

A At the beginning of this section I represented the motion of a projec-
tile on graph paper, breaking its motion into equal time intervals. Suppose
instead that there is no force on the object at all. It obeys Newton’s first law
and continues without changing its state of motion. What would the corre-
sponding graph-paper diagram look like? If the time interval represented
by each arrow was 1 second, how would you relate the graph-paper dia-
gram to the velocity components vx and vy ?

B Make up several different coordinate systems oriented in different
ways, and describe the ax and ay of a falling object in each one.

6.3 Newton’s laws in three dimensions
It is now fairly straightforward to extend Newton’s laws to three
dimensions:

Newton’s first law
If all three components of the total force on an object are zero,
then it will continue in the same state of motion.

Newton’s second law
The components of an object’s acceleration are predicted by
the equations

ax = Fx,total/m ,

ay = Fy,total/m , and

az = Fz,total/m .

Newton’s third law
If two objects A and B interact via forces, then the compo-
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g / Example 2.

nents of their forces on each other are equal and opposite:

FA on B,x = −FB on A,x ,

FA on B,y = −FB on A,y , and

FA on B,z = −FB on A,z .

Forces in perpendicular directions on the same objectexample 2
. An object is initially at rest. Two constant forces begin acting on
it, and continue acting on it for a while. As suggested by the two
arrows, the forces are perpendicular, and the rightward force is
stronger. What happens?

. Aristotle believed, and many students still do, that only one force
can “give orders” to an object at one time. They therefore think
that the object will begin speeding up and moving in the direction
of the stronger force. In fact the object will move along a diagonal.
In the example shown in the figure, the object will respond to the
large rightward force with a large acceleration component to the
right, and the small upward force will give it a small acceleration
component upward. The stronger force does not overwhelm the
weaker force, or have any effect on the upward motion at all. The
force components simply add together:

Fx ,total = F1,x +��
�*0

F2,x

Fy ,total =
�
��>

0
F1,y + F2,y

Discussion question

A The figure shows two trajectories, made by splicing together lines
and circular arcs, which are unphysical for an object that is only being
acted on by gravity. Prove that they are impossible based on Newton’s
laws.
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Summary
Selected vocabulary
component . . . . the part of a velocity, acceleration, or force

that would be perceptible to an observer who
could only see the universe projected along a
certain one-dimensional axis

parabola . . . . . the mathematical curve whose graph has y
proportional to x2

Notation
x, y, z . . . . . . an object’s positions along the x, y, and z axes
vx, vy, vz . . . . . the x, y, and z components of an object’s ve-

locity; the rates of change of the object’s x, y,
and z coordinates

ax, ay, az . . . . . the x, y, and z components of an object’s ac-
celeration; the rates of change of vx, vy, and
vz

Summary

A force does not produce any effect on the motion of an object
in a perpendicular direction. The most important application of
this principle is that the horizontal motion of a projectile has zero
acceleration, while the vertical motion has an acceleration equal to g.
That is, an object’s horizontal and vertical motions are independent.
The arc of a projectile is a parabola.

Motion in three dimensions is measured using three coordinates,
x, y, and z. Each of these coordinates has its own corresponding
velocity and acceleration. We say that the velocity and acceleration
both have x, y, and z components

Newton’s second law is readily extended to three dimensions by
rewriting it as three equations predicting the three components of
the acceleration,

ax = Fx,total/m ,

ay = Fy,total/m ,

az = Fz,total/m ,

and likewise for the first and third laws.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Two daredevils, Wendy and Bill, go over Niagara Falls. Wendy
sits in an inner tube, and lets the 30 km/hr velocity of the river throw
her out horizontally over the falls. Bill paddles a kayak, adding an
extra 10 km/hr to his velocity. They go over the edge of the falls
at the same moment, side by side. Ignore air friction. Explain your
reasoning.
(a) Who hits the bottom first?
(b) What is the horizontal component of Wendy’s velocity on im-
pact?
(c) What is the horizontal component of Bill’s velocity on impact?
(d) Who is going faster on impact?

2 At the 2010 Salinas Lettuce Festival Parade, the Lettuce Queen
drops her bouquet while riding on a float moving toward the right.
Sketch the shape of its trajectory in her frame of reference, and
compare with the shape seen by one of her admirers standing on
the sidewalk.

Problem 3.

3 A baseball pitcher throws a pitch clocked at vx=73.3 mi/h.
He throws horizontally. By what amount, d, does the ball drop by
the time it reaches home plate, L=60.0 ft away?
(a) First find a symbolic answer in terms of L, vx, and g.

√

(b) Plug in and find a numerical answer. Express your answer in
units of ft. (Note: 1 ft=12 in, 1 mi=5280 ft, and 1 in=2.54 cm)√

4 Two cars go over the same speed bump in a parking lot,
Maria’s Maserati at 25 miles per hour and Park’s Porsche at 37.
How many times greater is the vertical acceleration of the Porsche?
Hint: Remember that acceleration depends both on how much the
velocity changes and on how much time it takes to change.

√
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5 A batter hits a baseball at speed v, at an angle θ above
horizontal.
(a) Find an equation for the range (horizontal distance to where
the ball falls), R, in terms of the relevant variables. Neglect air
friction and the height of the ball above the ground when it is hit.

. Answer, p. 528
(b) Interpret your equation in the cases of θ=0 and θ = 90◦.
(c) Find the angle that gives the maximum range.

. Answer, p. 528

6 (a) A ball is thrown straight up with velocity v. Find an
equation for the height to which it rises.

√

(b) Generalize your equation for a ball thrown at an angle θ above
horizontal, in which case its initial velocity components are vx =
v cos θ and vy = v sin θ.

√
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a / Vectors are used in aerial nav-
igation.

Chapter 7

Vectors

7.1 Vector notation
The idea of components freed us from the confines of one-dimensional
physics, but the component notation can be unwieldy, since every
one-dimensional equation has to be written as a set of three separate
equations in the three-dimensional case. Newton was stuck with the
component notation until the day he died, but eventually someone
sufficiently lazy and clever figured out a way of abbreviating three
equations as one.

(a)
−→
F A on B = −

−→
F B on A stands for

FA on B,x = −FB on A,x

FA on B,y = −FB on A,y

FA on B,z = −FB on A,z

(b)
−→
F total =

−→
F 1 +

−→
F 2 + . . . stands for

Ftotal,x = F1,x + F2,x + . . .
Ftotal,y = F1,y + F2,y + . . .
Ftotal,z = F1,z + F2,z + . . .

(c) −→a = ∆−→v
∆t stands for

ax = ∆vx/∆t
ay = ∆vy/∆t
az = ∆vz/∆t

Example (a) shows both ways of writing Newton’s third law. Which
would you rather write?

The idea is that each of the algebra symbols with an arrow writ-
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ten on top, called a vector, is actually an abbreviation for three
different numbers, the x, y, and z components. The three compo-
nents are referred to as the components of the vector, e.g., Fx is the

x component of the vector
−→
F . The notation with an arrow on top

is good for handwritten equations, but is unattractive in a printed
book, so books use boldface, F, to represent vectors. After this
point, I’ll use boldface for vectors throughout this book.

In general, the vector notation is useful for any quantity that
has both an amount and a direction in space. Even when you are
not going to write any actual vector notation, the concept itself is a
useful one. We say that force and velocity, for example, are vectors.
A quantity that has no direction in space, such as mass or time,
is called a scalar. The amount of a vector quantity is called its
magnitude. The notation for the magnitude of a vector A is |A|,
like the absolute value sign used with scalars.

Often, as in example (b), we wish to use the vector notation to
represent adding up all the x components to get a total x component,
etc. The plus sign is used between two vectors to indicate this type
of component-by-component addition. Of course, vectors are really
triplets of numbers, not numbers, so this is not the same as the use
of the plus sign with individual numbers. But since we don’t want to
have to invent new words and symbols for this operation on vectors,
we use the same old plus sign, and the same old addition-related
words like “add,” “sum,” and “total.” Combining vectors this way
is called vector addition.

Similarly, the minus sign in example (a) was used to indicate
negating each of the vector’s three components individually. The
equals sign is used to mean that all three components of the vector
on the left side of an equation are the same as the corresponding
components on the right.

Example (c) shows how we abuse the division symbol in a similar
manner. When we write the vector ∆v divided by the scalar ∆t,
we mean the new vector formed by dividing each one of the velocity
components by ∆t.

It’s not hard to imagine a variety of operations that would com-
bine vectors with vectors or vectors with scalars, but only four of
them are required in order to express Newton’s laws:

operation definition
vector + vector Add component by component to

make a new set of three numbers.
vector− vector Subtract component by component

to make a new set of three numbers.
vector · scalar Multiply each component of the vec-

tor by the scalar.
vector/scalar Divide each component of the vector

by the scalar.

200 Chapter 7 Vectors



b / The x an y components
of a vector can be thought of as
the shadows it casts onto the x
and y axes.

c / Self-check B.

As an example of an operation that is not useful for physics, there
just aren’t any useful physics applications for dividing a vector by
another vector component by component. In optional section 7.5,
we discuss in more detail the fundamental reasons why some vector
operations are useful and others useless.

We can do algebra with vectors, or with a mixture of vectors
and scalars in the same equation. Basically all the normal rules of
algebra apply, but if you’re not sure if a certain step is valid, you
should simply translate it into three component-based equations and
see if it works.

Order of addition example 1
. If we are adding two force vectors, F + G, is it valid to assume
as in ordinary algebra that F + G is the same as G + F?

. To tell if this algebra rule also applies to vectors, we simply
translate the vector notation into ordinary algebra notation. In
terms of ordinary numbers, the components of the vector F + G
would be Fx + Gx , Fy + Gy , and Fz + Gz , which are certainly the
same three numbers as Gx + Fx , Gy + Fy , and Gz + Fz . Yes, F + G
is the same as G + F.

It is useful to define a symbol r for the vector whose components
are x, y, and z, and a symbol ∆r made out of ∆x, ∆y, and ∆z.

Although this may all seem a little formidable, keep in mind that
it amounts to nothing more than a way of abbreviating equations!
Also, to keep things from getting too confusing the remainder of this
chapter focuses mainly on the ∆r vector, which is relatively easy to
visualize.

self-check A
Translate the equations vx = ∆x/∆t , vy = ∆y/∆t , and vz = ∆z/∆t for
motion with constant velocity into a single equation in vector notation.
. Answer, p. 525

Drawing vectors as arrows

A vector in two dimensions can be easily visualized by drawing
an arrow whose length represents its magnitude and whose direction
represents its direction. The x component of a vector can then be
visualized as the length of the shadow it would cast in a beam of
light projected onto the x axis, and similarly for the y component.
Shadows with arrowheads pointing back against the direction of the
positive axis correspond to negative components.

In this type of diagram, the negative of a vector is the vector
with the same magnitude but in the opposite direction. Multiplying
a vector by a scalar is represented by lengthening the arrow by that
factor, and similarly for division.

self-check B
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d / Example 2.

Given vector Q represented by an arrow in figure c, draw arrows repre-
senting the vectors 1.5Q and −Q. . Answer, p.
525

Discussion questions

A Would it make sense to define a zero vector? Discuss what the
zero vector’s components, magnitude, and direction would be; are there
any issues here? If you wanted to disqualify such a thing from being a
vector, consider whether the system of vectors would be complete. For
comparison, can you think of a simple arithmetic problem with ordinary
numbers where you need zero as the result? Does the same reasoning
apply to vectors, or not? From your group, choose one person to act as
zero’s advocate and one to argue against letting zero in the club. The rest
of the group should act as jurors.

B You drive to your friend’s house. How does the magnitude of your ∆r
vector compare with the distance you’ve added to the car’s odometer?

7.2 Calculations with magnitude and direction
If you ask someone where Las Vegas is compared to Los Angeles,
they are unlikely to say that the ∆x is 290 km and the ∆y is 230
km, in a coordinate system where the positive x axis is east and the
y axis points north. They will probably say instead that it’s 370 km
to the northeast. If they were being precise, they might specify the
direction as 38◦ counterclockwise from east. In two dimensions, we
can always specify a vector’s direction like this, using a single angle.
A magnitude plus an angle suffice to specify everything about the
vector. The following two examples show how we use trigonometry
and the Pythagorean theorem to go back and forth between the x−y
and magnitude-angle descriptions of vectors.

Finding magnitude and angle from components example 2
. Given that the ∆r vector from LA to Las Vegas has ∆x = 290 km
and ∆y = 230 km, how would we find the magnitude and direction
of ∆r?

. We find the magnitude of ∆r from the Pythagorean theorem:

|∆r| =
√
∆x2 + ∆y2

= 370 km

We know all three sides of the triangle, so the angle θ can be
found using any of the inverse trig functions. For example, we
know the opposite and adjacent sides, so

θ = tan−1 ∆y
∆x

= 38◦ .
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e / Example 4.

Finding components from magnitude and angle example 3
. Given that the straight-line distance from Los Angeles to Las
Vegas is 370 km, and that the angle θ in the figure is 38◦, how
can the x and y components of the ∆r vector be found?

. The sine and cosine of θ relate the given information to the
information we wish to find:

cos θ =
∆x
|∆r|

sin θ =
∆y
|∆r|

Solving for the unknowns gives

∆x = |∆r| cos θ
= 290 km and

∆y = |∆r| sin θ
= 230 km .

The following example shows the correct handling of the plus
and minus signs, which is usually the main cause of mistakes.

Negative components example 4
. San Diego is 120 km east and 150 km south of Los Angeles. An
airplane pilot is setting course from San Diego to Los Angeles. At
what angle should she set her course, measured counterclock-
wise from east, as shown in the figure?

. If we make the traditional choice of coordinate axes, with x
pointing to the right and y pointing up on the map, then her ∆x is
negative, because her final x value is less than her initial x value.
Her ∆y is positive, so we have

∆x = −120 km
∆y = 150 km .

If we work by analogy with example 2, we get

θ = tan−1 ∆y
∆x

= tan−1(−1.25)
= −51◦ .

According to the usual way of defining angles in trigonometry,
a negative result means an angle that lies clockwise from the x
axis, which would have her heading for the Baja California. What
went wrong? The answer is that when you ask your calculator to
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f / Example 5.

g / Vectors can be added graph-
ically by placing them tip to tail,
and then drawing a vector from
the tail of the first vector to the tip
of the second vector.

take the arctangent of a number, there are always two valid pos-
sibilities differing by 180◦. That is, there are two possible angles
whose tangents equal -1.25:

tan 129◦ = −1.25
tan−51◦ = −1.25

You calculator doesn’t know which is the correct one, so it just
picks one. In this case, the one it picked was the wrong one, and
it was up to you to add 180◦to it to find the right answer.

Discussion question

A In example 4, we dealt with components that were negative. Does it
make sense to classify vectors as positive and negative?

7.3 Techniques for adding vectors
Vector addition is one of the three essential mathematical skills,
summarized on pp.504-505, that you need for success in this course.

Addition of vectors given their components

The easiest type of vector addition is when you are in possession
of the components, and want to find the components of their sum.

Adding components example 5
. Given the ∆x and ∆y values from the previous examples, find
the ∆x and ∆y from San Diego to Las Vegas.

.

∆xtotal = ∆x1 + ∆x2

= −120 km + 290 km
= 170 km

∆ytotal = ∆y1 + ∆y2

= 150 km + 230 km
= 380

Note how the signs of the x components take care of the west-
ward and eastward motions, which partially cancel.

Addition of vectors given their magnitudes and directions

In this case, you must first translate the magnitudes and di-
rections into components, and the add the components. In our San
Diego-Los Angeles-Las Vegas example, we can simply string together
the preceding examples; this is done on p. 505.

Graphical addition of vectors

Often the easiest way to add vectors is by making a scale drawing
on a piece of paper. This is known as graphical addition, as opposed
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to the analytic techniques discussed previously. (It has nothing to
do with x − y graphs or graph paper. “Graphical” here simply
means drawing. It comes from the Greek verb “grapho,” to write,
like related English words including “graphic.”)

LA to Vegas, graphically example 6
. Given the magnitudes and angles of the ∆r vectors from San
Diego to Los Angeles and from Los Angeles to Las Vegas, find
the magnitude and angle of the ∆r vector from San Diego to Las
Vegas.

. Using a protractor and a ruler, we make a careful scale draw-
ing, as shown in figure h. The protractor can be conveniently
aligned with the blue rules on the notebook paper. A scale of
1 mm→ 2 km was chosen for this solution because it was as big
as possible (for accuracy) without being so big that the drawing
wouldn’t fit on the page. With a ruler, we measure the distance
from San Diego to Las Vegas to be 206 mm, which corresponds
to 412 km. With a protractor, we measure the angle θ to be 65◦.

h / Example 6.

Even when we don’t intend to do an actual graphical calculation
with a ruler and protractor, it can be convenient to diagram the
addition of vectors in this way. With ∆r vectors, it intuitively makes
sense to lay the vectors tip-to-tail and draw the sum vector from the
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tail of the first vector to the tip of the second vector. We can do
the same when adding other vectors such as force vectors.

self-check C
How would you subtract vectors graphically? . Answer, p. 525

Discussion questions

A If you’re doing graphical addition of vectors, does it matter which
vector you start with and which vector you start from the other vector’s
tip?

B If you add a vector with magnitude 1 to a vector of magnitude 2,
what magnitudes are possible for the vector sum?

C Which of these examples of vector addition are correct, and which
are incorrect?

7.4 ? Unit vector notation
When we want to specify a vector by its components, it can be cum-
bersome to have to write the algebra symbol for each component:

∆x = 290 km, ∆y = 230 km

A more compact notation is to write

∆r = (290 km)x̂ + (230 km)ŷ ,

where the vectors x̂, ŷ, and ẑ, called the unit vectors, are defined
as the vectors that have magnitude equal to 1 and directions lying
along the x, y, and z axes. In speech, they are referred to as “x-hat”
and so on.

A slightly different, and harder to remember, version of this
notation is unfortunately more prevalent. In this version, the unit
vectors are called î, ĵ, and k̂:

∆r = (290 km)̂i + (230 km)̂j .
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i / Component-by-component
multiplication of the vectors in 1
would produce different vectors
in coordinate systems 2 and 3.

7.5 ? Rotational invariance
Let’s take a closer look at why certain vector operations are use-
ful and others are not. Consider the operation of multiplying two
vectors component by component to produce a third vector:

Rx = PxQx

Ry = PyQy

Rz = PzQz

As a simple example, we choose vectors P and Q to have length
1, and make them perpendicular to each other, as shown in figure
i/1. If we compute the result of our new vector operation using the
coordinate system in i/2, we find:

Rx = 0

Ry = 0

Rz = 0

The x component is zero because Px = 0, the y component is zero
because Qy = 0, and the z component is of course zero because both
vectors are in the x − y plane. However, if we carry out the same
operations in coordinate system i/3, rotated 45 degrees with respect
to the previous one, we find

Rx = 1/2

Ry = −1/2

Rz = 0

The operation’s result depends on what coordinate system we use,
and since the two versions of R have different lengths (one being zero
and the other nonzero), they don’t just represent the same answer
expressed in two different coordinate systems. Such an operation
will never be useful in physics, because experiments show physics
works the same regardless of which way we orient the laboratory
building! The useful vector operations, such as addition and scalar
multiplication, are rotationally invariant, i.e., come out the same
regardless of the orientation of the coordinate system.

Calibrating an electronic compass example 7
Some smart phones and GPS units contain electronic compasses
that can sense the direction of the earth’s magnetic field vector,
notated B. Because all vectors work according to the same rules,
you don’t need to know anything special about magnetism in or-
der to understand this example. Unlike a traditional compass that
uses a magnetized needle on a bearing, an electronic compass
has no moving parts. It contains two sensors oriented perpendic-
ular to one another, and each sensor is only sensitive to the com-
ponent of the earth’s field that lies along its own axis. Because a

Section 7.5 ? Rotational invariance 207



choice of coordinates is arbitrary, we can take one of these sen-
sors as defining the x axis and the other the y . Given the two
components Bx and By , the device’s computer chip can compute
the angle of magnetic north relative to its sensors, tan−1(By/Bx ).

All compasses are vulnerable to errors because of nearby mag-
netic materials, and in particular it may happen that some part
of the compass’s own housing becomes magnetized. In an elec-
tronic compass, rotational invariance provides a convenient way
of calibrating away such effects by having the user rotate the de-
vice in a horizontal circle.

Suppose that when the compass is oriented in a certain way that
it measures Bx = 1.00 and By = 0.00 (in certain units). We then
expect that when it is rotated 90 degrees clockwise, the sensors
will detect Bx = 0.00 and By = 1.00.

But imagine instead that we get Bx = 0.20 and By = 0.80. This
would violate rotational invariance, since rotating the coordinate
system is supposed to give a different description of the same
vector. The magnitude appears to have changed from 1.00 to√

0.202 + 0.802 = 0.82, and a vector can’t change its magnitude
just because you rotate it. The compass’s computer chip figures
out that some effect, possibly a slight magnetization of its hous-
ing, must be adding an erroneous 0.2 units to all the Bx readings,
because subtracting this amount from all the Bx values gives vec-
tors that have the same magnitude, satisfying rotational invari-
ance.
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Summary
Selected vocabulary
vector . . . . . . . a quantity that has both an amount (magni-

tude) and a direction in space
magnitude . . . . the “amount” associated with a vector
scalar . . . . . . . a quantity that has no direction in space, only

an amount

Notation
A . . . . . . . . . a vector with components Ax, Ay, and Az−→
A . . . . . . . . . handwritten notation for a vector
|A| . . . . . . . . the magnitude of vector A
r . . . . . . . . . . the vector whose components are x, y, and z
∆r . . . . . . . . . the vector whose components are ∆x, ∆y, and

∆z
x̂, ŷ, ẑ . . . . . . (optional topic) unit vectors; the vectors with

magnitude 1 lying along the x, y, and z axes

î, ĵ, k̂ . . . . . . . a harder to remember notation for the unit
vectors

Other terminology and notation
displacement vec-
tor . . . . . . . . .

a name for the symbol ∆r

speed . . . . . . . the magnitude of the velocity vector, i.e., the
velocity stripped of any information about its
direction

Summary

A vector is a quantity that has both a magnitude (amount) and
a direction in space, as opposed to a scalar, which has no direction.
The vector notation amounts simply to an abbreviation for writing
the vector’s three components.

In two dimensions, a vector can be represented either by its two
components or by its magnitude and direction. The two ways of
describing a vector can be related by trigonometry.

The two main operations on vectors are addition of a vector to
a vector, and multiplication of a vector by a scalar.

Vector addition means adding the components of two vectors
to form the components of a new vector. In graphical terms, this
corresponds to drawing the vectors as two arrows laid tip-to-tail and
drawing the sum vector from the tail of the first vector to the tip
of the second one. Vector subtraction is performed by negating the
vector to be subtracted and then adding.

Multiplying a vector by a scalar means multiplying each of its
components by the scalar to create a new vector. Division by a
scalar is defined similarly.

Differentiation and integration of vectors is defined component
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by component.
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Problem 1.

Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure shows vectors A and B. As in figure g on p. 204,
graphically calculate the following:

A + B, A−B, B−A, −2B, A− 2B

No numbers are involved.

2 Phnom Penh is 470 km east and 250 km south of Bangkok.
Hanoi is 60 km east and 1030 km north of Phnom Penh.
(a) Choose a coordinate system, and translate these data into ∆x
and ∆y values with the proper plus and minus signs.
(b) Find the components of the ∆r vector pointing from Bangkok
to Hanoi.

√

3 If you walk 35 km at an angle 25◦ counterclockwise from east,
and then 22 km at 230◦ counterclockwise from east, find the distance
and direction from your starting point to your destination.

√

4 A machinist is drilling holes in a piece of aluminum according
to the plan shown in the figure. She starts with the top hole, then
moves to the one on the left, and then to the one on the right. Since
this is a high-precision job, she finishes by moving in the direction
and at the angle that should take her back to the top hole, and
checks that she ends up in the same place. What are the distance
and direction from the right-hand hole to the top one?

√
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5 Suppose someone proposes a new operation in which a vector
A and a scalar B are added together to make a new vector C like
this:

Cx = Ax +B

Cy = Ay +B

Cz = Az +B

Prove that this operation won’t be useful in physics, because it’s
not rotationally invariant.

6 In this problem you’ll extend the analysis in problem 5 on
p. 197 to include air friction by writing a computer program. For
a game played at sea level, the force due to air friction is approxi-
mately (7×10−4 N·s2/m2)v2, in the direction opposite to the motion
of the ball.1 The mass of a baseball is 0.146 kg.
(a) For a ball hit at a speed of 45.0 m/s from a height of 1.0 m, find
the optimal angle and the resulting range. . Answer, p. 528
(b) How much farther would the ball fly at the Colorado Rockies’
stadium, where the thinner air gives 18 percent less air friction?

. Answer, p. 528

7 Suppose someone proposes a new operation in which a vector
A is used to produce a new vector B like this:

Bx = sinAx

By = sinAy

Bz = sinAz

Prove that this operation won’t be useful in physics, because it’s
not rotationally invariant. . Solution, p. 515

1A standard baseball is supposed to have a circumference of 9 1
8

inches. A
standard way of paramerizing the force of fluid friction is F = (1/2)ρACDv

2,
where ρ is the density of the fluid, A is the object’s cross-sectional area, and
CD is a unitless constant. E. Meyer and J. Bohn, in a 2008 paper published at
arxiv.org, survey existing data on CD for baseballs and estimate it to be in the
range from about 0.13 to 0.5. This leads to a figure something like the one given.
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Chapter 8

Vectors and motion

In 1872, capitalist and former California governor Leland Stanford
asked photographer Eadweard Muybridge if he would work for him
on a project to settle a $25,000 bet (a princely sum at that time).
Stanford’s friends were convinced that a galloping horse always had
at least one foot on the ground, but Stanford claimed that there was
a moment during each cycle of the motion when all four feet were
in the air. The human eye was simply not fast enough to settle the
question. In 1878, Muybridge finally succeeded in producing what
amounted to a motion picture of the horse, showing conclusively
that all four feet did leave the ground at one point. (Muybridge was
a colorful figure in San Francisco history, and his acquittal for the
murder of his wife’s lover was considered the trial of the century in
California.)

The losers of the bet had probably been influenced by Aris-
totelian reasoning, for instance the expectation that a leaping horse
would lose horizontal velocity while in the air with no force to push
it forward, so that it would be more efficient for the horse to run
without leaping. But even for students who have converted whole-
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heartedly to Newtonianism, the relationship between force and ac-
celeration leads to some conceptual difficulties, the main one being
a problem with the true but seemingly absurd statement that an
object can have an acceleration vector whose direction is not the
same as the direction of motion. The horse, for instance, has nearly
constant horizontal velocity, so its ax is zero. But as anyone can tell
you who has ridden a galloping horse, the horse accelerates up and
down. The horse’s acceleration vector therefore changes back and
forth between the up and down directions, but is never in the same
direction as the horse’s motion. In this chapter, we will examine
more carefully the properties of the velocity, acceleration, and force
vectors. No new principles are introduced, but an attempt is made
to tie things together and show examples of the power of the vector
formulation of Newton’s laws.

8.1 The velocity vector
For motion with constant velocity, the velocity vector is

v = ∆r/∆t . [only for constant velocity]

The ∆r vector points in the direction of the motion, and dividing
it by the scalar ∆t only changes its length, not its direction, so the
velocity vector points in the same direction as the motion. When
the velocity vector is not constant, we form it from the components
vx = dx/dt, vy = dy/dt, and vz = dz/dt. This set of three equations
can be notated more compactly as

v = dr/dt .

This is an example of a more general rule about differentiating vec-
tors: to differentiate a vector, take the derivative component by
component. Even when the velocity vector is not constant, it still
points along the direction of motion.

A car bouncing on its shock absorbers example 1
. A car bouncing on its shock absorbers has a position as a func-
tion of time given by

r = bt x̂ + (c sinωt)ŷ ,

where b, c, and ω (Greek letter omega) are constants. Infer the
units of the constants, find the velocity, and check the units of the
result.

. The components of the position vector are bt and c sinωt , and
if these are both to have units of meters, then b must have units of
m/s and c units of meters. The sine function requires a unitless
input, so ω must have units of s−1 (interpreted as radians per
second, e.g., if c = 2π rad/s, then the car completes one cycle of
vertical oscillation in one second).
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a / Example 2.

Differentiating component by component, we find

v = bx̂ + (cω cosωt)ŷ .

The units of the first component are simply the units of b, m/s,
which makes sense. The units of the second component are
m · s−1, which also checks out.

Vector addition is the correct way to generalize the one-dimensional
concept of adding velocities in relative motion, as shown in the fol-
lowing example:

Velocity vectors in relative motion example 2
. You wish to cross a river and arrive at a dock that is directly
across from you, but the river’s current will tend to carry you
downstream. To compensate, you must steer the boat at an an-
gle. Find the angle θ, given the magnitude, |vWL|, of the water’s
velocity relative to the land, and the maximum speed, |vBW |, of
which the boat is capable relative to the water.

. The boat’s velocity relative to the land equals the vector sum of
its velocity with respect to the water and the water’s velocity with
respect to the land,

vBL = vBW + vWL .

If the boat is to travel straight across the river, i.e., along the y
axis, then we need to have vBL,x = 0. This x component equals
the sum of the x components of the other two vectors,

vBL,x = vBW ,x + vWL,x ,

or
0 = −|vBW | sin θ + |vWL| .

Solving for θ, we find

sin θ = |vWL|/|vBW | ,

so

θ = sin−1 |vWL|
|vBW |

.

. Solved problem: Annie Oakley page 224, problem 3

Discussion questions

A Is it possible for an airplane to maintain a constant velocity vector
but not a constant |v|? How about the opposite – a constant |v| but not a
constant velocity vector? Explain.

B New York and Rome are at about the same latitude, so the earth’s
rotation carries them both around nearly the same circle. Do the two cities
have the same velocity vector (relative to the center of the earth)? If not,
is there any way for two cities to have the same velocity vector?
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b / A change in the magni-
tude of the velocity vector implies
an acceleration.

c / A change in the direction
of the velocity vector also pro-
duces a nonzero ∆v vector, and
thus a nonzero acceleration
vector, ∆v/∆t .

8.2 The acceleration vector

When the acceleration is constant, we have

a = ∆v/∆t , [only for constant acceleration]

which can be written in terms of initial and final velocities as

a = (vf − vi)/∆t . [only for constant acceleration]

In general, we define the acceleration vector as the derivative

a = dv/dt .

Now there are two ways in which we could have a nonzero accel-
eration. Either the magnitude or the direction of the velocity vector
could change. This can be visualized with arrow diagrams as shown
in figures b and c. Both the magnitude and direction can change
simultaneously, as when a car accelerates while turning. Only when
the magnitude of the velocity changes while its direction stays con-
stant do we have a ∆v vector and an acceleration vector along the
same line as the motion.

self-check A
(1) In figure b, is the object speeding up, or slowing down? (2) What
would the diagram look like if vi was the same as vf ? (3) Describe how
the ∆v vector is different depending on whether an object is speeding
up or slowing down. . Answer, p. 525

If this all seems a little strange and abstract to you, you’re not
alone. It doesn’t mean much to most physics students the first
time someone tells them that acceleration is a vector, and that the
acceleration vector does not have to be in the same direction as the
velocity vector. One way to understand those statements better is
to imagine an object such as an air freshener or a pair of fuzzy dice
hanging from the rear-view mirror of a car. Such a hanging object,
called a bob, constitutes an accelerometer. If you watch the bob
as you accelerate from a stop light, you’ll see it swing backward.
The horizontal direction in which the bob tilts is opposite to the
direction of the acceleration. If you apply the brakes and the car’s
acceleration vector points backward, the bob tilts forward.

After accelerating and slowing down a few times, you think
you’ve put your accelerometer through its paces, but then you make
a right turn. Surprise! Acceleration is a vector, and needn’t point
in the same direction as the velocity vector. As you make a right
turn, the bob swings outward, to your left. That means the car’s
acceleration vector is to your right, perpendicular to your velocity
vector. A useful definition of an acceleration vector should relate
in a systematic way to the actual physical effects produced by the
acceleration, so a physically reasonable definition of the acceleration
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vector must allow for cases where it is not in the same direction as
the motion.

self-check B
In projectile motion, what direction does the acceleration vector have?
. Answer, p. 525

d / Example 3.

Rappelling example 3
In figure d, the rappeller’s velocity has long periods of gradual
change interspersed with short periods of rapid change. These
correspond to periods of small acceleration and force, and peri-
ods of large acceleration and force.

The galloping horse example 4
Figure e on page 218 shows outlines traced from the first, third,
fifth, seventh, and ninth frames in Muybridge’s series of pho-
tographs of the galloping horse. The estimated location of the
horse’s center of mass is shown with a circle, which bobs above
and below the horizontal dashed line.

If we don’t care about calculating velocities and accelerations in
any particular system of units, then we can pretend that the time
between frames is one unit. The horse’s velocity vector as it
moves from one point to the next can then be found simply by
drawing an arrow to connect one position of the center of mass to
the next. This produces a series of velocity vectors which alter-
nate between pointing above and below horizontal.
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e / Example 4.

The ∆v vector is the vector which we would have to add onto one
velocity vector in order to get the next velocity vector in the series.
The ∆v vector alternates between pointing down (around the time
when the horse is in the air, B) and up (around the time when the
horse has two feet on the ground, D).

Discussion questions

A When a car accelerates, why does a bob hanging from the rearview
mirror swing toward the back of the car? Is it because a force throws it
backward? If so, what force? Similarly, describe what happens in the
other cases described above.

B Superman is guiding a crippled spaceship into port. The ship’s
engines are not working. If Superman suddenly changes the direction of
his force on the ship, does the ship’s velocity vector change suddenly? Its
acceleration vector? Its direction of motion?
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f / Example 5.

g / The applied force FA pushes
the block up the frictionless ramp.

h / Three forces act on the
block. Their vector sum is zero.

i / If the block is to move at
constant velocity, Newton’s first
law says that the three force
vectors acting on it must add
up to zero. To perform vector
addition, we put the vectors tip
to tail, and in this case we are
adding three vectors, so each
one’s tail goes against the tip of
the previous one. Since they are
supposed to add up to zero, the
third vector’s tip must come back
to touch the tail of the first vector.
They form a triangle, and since
the applied force is perpendicular
to the normal force, it is a right
triangle.

8.3 The force vector and simple machines
Force is relatively easy to intuit as a vector. The force vector points
in the direction in which it is trying to accelerate the object it is
acting on.

Since force vectors are so much easier to visualize than accel-
eration vectors, it is often helpful to first find the direction of the
(total) force vector acting on an object, and then use that informa-
tion to determine the direction of the acceleration vector. Newton’s
second law, Ftotal = ma, tells us that the two must be in the same
direction.

A component of a force vector example 5
Figure f, redrawn from a classic 1920 textbook, shows a boy
pulling another child on a sled. His force has both a horizontal
component and a vertical one, but only the horizontal one accel-
erates the sled. (The vertical component just partially cancels the
force of gravity, causing a decrease in the normal force between
the runners and the snow.) There are two triangles in the figure.
One triangle’s hypotenuse is the rope, and the other’s is the mag-
nitude of the force. These triangles are similar, so their internal
angles are all the same, but they are not the same triangle. One
is a distance triangle, with sides measured in meters, the other
a force triangle, with sides in newtons. In both cases, the hori-
zontal leg is 93% as long as the hypotenuse. It does not make
sense, however, to compare the sizes of the triangles — the force
triangle is not smaller in any meaningful sense.

Pushing a block up a ramp example 6
. Figure g shows a block being pushed up a frictionless ramp
at constant speed by an applied force FA. How much force is
required, in terms of the block’s mass, m, and the angle of the
ramp, θ?

. Figure h shows the other two forces acting on the block: a nor-
mal force, FN , created by the ramp, and the weight force, FW ,
created by the earth’s gravity. Because the block is being pushed
up at constant speed, it has zero acceleration, and the total force
on it must be zero. From figure i, we find

|FA| = |FW | sin θ
= mg sin θ .

Since the sine is always less than one, the applied force is always
less than mg, i.e., pushing the block up the ramp is easier than
lifting it straight up. This is presumably the principle on which the
pyramids were constructed: the ancient Egyptians would have
had a hard time applying the forces of enough slaves to equal the
full weight of the huge blocks of stone.

Essentially the same analysis applies to several other simple ma-
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Discussion question A.

j / Discussion question B.

chines, such as the wedge and the screw.

. Solved problem: A cargo plane page 226, problem 9

. Solved problem: The angle of repose page 227, problem 13

. Solved problem: A wagon page 227, problem 14

Discussion questions

A The figure shows a block being pressed diagonally upward against a
wall, causing it to slide up the wall. Analyze the forces involved, including
their directions.

B The figure shows a roller coaster car rolling down and then up under
the influence of gravity. Sketch the car’s velocity vectors and acceleration
vectors. Pick an interesting point in the motion and sketch a set of force
vectors acting on the car whose vector sum could have resulted in the
right acceleration vector.

8.4 More about calculus with vectors
Our definition of the derivative of a vector implies the familiar prop-
erties

d(cf)

dt
= c

d(f)

dt
[c is a constant]

and

d(f + g)

dt
=

d(f)

dt
+

d(g)

dt
.

The integral of a vector is likewise defined as integrating component
by component.

The second derivative of a vector example 7
. Two objects have positions as functions of time given by the
equations

r1 = 3t2x̂ + t ŷ

and

r2 = 3t4x̂ + t ŷ .

Find both objects’ accelerations using calculus. Could either an-
swer have been found without calculus?

. Taking the first derivative of each component, we find

v1 = 6t x̂ + ŷ

v2 = 12t3x̂ + ŷ ,

and taking the derivatives again gives acceleration,

a1 = 6x̂

a2 = 36t2x̂ .
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The first object’s acceleration could have been found without cal-
culus, simply by comparing the x and y coordinates with the
constant-acceleration equation ∆x = vo∆t + 1

2a∆t2. The second
equation, however, isn’t just a second-order polynomial in t , so
the acceleration isn’t constant, and we really did need calculus to
find the corresponding acceleration.

The integral of a vector example 8
. Starting from rest, a flying saucer of mass m is observed to
vary its propulsion with mathematical precision according to the
equation

F = bt42x̂ + ct137ŷ .

(The aliens inform us that the numbers 42 and 137 have a special
religious significance for them.) Find the saucer’s velocity as a
function of time.

. From the given force, we can easily find the acceleration

a =
F
m

=
b
m

t42x̂ +
c
m

t137ŷ .

The velocity vector v is the integral with respect to time of the
acceleration,

v =
∫

a dt

=
∫ (

b
m

t42x̂ +
c
m

t137ŷ
)

dt ,

and integrating component by component gives

=
(∫

b
m

t42 dt
)

x̂ +
(∫

c
m

t137 dt
)

ŷ

=
b

43m
t43x̂ +

c
138m

t138ŷ ,

where we have omitted the constants of integration, since the
saucer was starting from rest.

A fire-extinguisher stunt on ice example 9
. Prof. Puerile smuggles a fire extinguisher into a skating rink.
Climbing out onto the ice without any skates on, he sits down and
pushes off from the wall with his feet, acquiring an initial velocity
voŷ. At t = 0, he then discharges the fire extinguisher at a 45-
degree angle so that it applies a force to him that is backward
and to the left, i.e., along the negative y axis and the positive x
axis. The fire extinguisher’s force is strong at first, but then dies
down according to the equation |F| = b − ct , where b and c are
constants. Find the professor’s velocity as a function of time.
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. Measured counterclockwise from the x axis, the angle of the
force vector becomes 315◦. Breaking the force down into x and
y components, we have

Fx = |F| cos 315◦

= (b − ct)
Fy = |F| sin 315◦

= (−b + ct) .

In unit vector notation, this is

F = (b − ct)x̂ + (−b + ct)ŷ .

Newton’s second law gives

a = F/m

=
b − ct√

2m
x̂ +
−b + ct√

2m
ŷ .

To find the velocity vector as a function of time, we need to inte-
grate the acceleration vector with respect to time,

v =
∫

a dt

=
∫ (

b − ct√
2m

x̂ +
−b + ct√

2m
ŷ
)

dt

=
1√
2m

∫ [
(b − ct) x̂ + (−b + ct) ŷ

]
dt

A vector function can be integrated component by component, so
this can be broken down into two integrals,

v =
x̂√
2m

∫
(b − ct) dt +

ŷ√
2m

∫
(−b + ct) dt

=

(
bt − 1

2ct2
√

2m
+ constant #1

)
x̂ +

(
−bt + 1

2ct2
√

2m
+ constant #2

)
ŷ

Here the physical significance of the two constants of integration
is that they give the initial velocity. Constant #1 is therefore zero,
and constant #2 must equal vo. The final result is

v =

(
bt − 1

2ct2
√

2m

)
x̂ +

(
−bt + 1

2ct2
√

2m
+ vo

)
ŷ .
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Summary
The velocity vector points in the direction of the object’s motion.
Relative motion can be described by vector addition of velocities.

The acceleration vector need not point in the same direction as
the object’s motion. We use the word “acceleration” to describe any
change in an object’s velocity vector, which can be either a change
in its magnitude or a change in its direction.

An important application of the vector addition of forces is the
use of Newton’s first law to analyze mechanical systems.
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Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Is it possible for a helicopter to have an acceleration due east
and a velocity due west? If so, what would be going on? If not, why
not?

2 The figure shows the path followed by Hurricane Irene in 2005
as it moved north. The dots show the location of the center of the
storm at six-hour intervals, with lighter dots at the time when the
storm reached its greatest intensity. Find the time when the storm’s
center had a velocity vector to the northeast and an acceleration
vector to the southeast. Explain.

3 Annie Oakley, riding north on horseback at 30 mi/hr, shoots
her rifle, aiming horizontally and to the northeast. The muzzle speed
of the rifle is 140 mi/hr. When the bullet hits a defenseless fuzzy
animal, what is its speed of impact? Neglect air resistance, and
ignore the vertical motion of the bullet. . Solution, p. 515

Problem 4.

4 A dinosaur fossil is slowly moving down the slope of a glacier
under the influence of wind, rain and gravity. At the same time,
the glacier is moving relative to the continent underneath. The
dashed lines represent the directions but not the magnitudes of the
velocities. Pick a scale, and use graphical addition of vectors to find
the magnitude and the direction of the fossil’s velocity relative to
the continent. You will need a ruler and protractor.

√

5 A bird is initially flying horizontally east at 21.1 m/s, but one
second later it has changed direction so that it is flying horizontally
and 7◦ north of east, at the same speed. What are the magnitude
and direction of its acceleration vector during that one second time
interval? (Assume its acceleration was roughly constant.)

√
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Problem 7.

6 A gun is aimed horizontally to the west, and fired at t = 0. The
bullet’s position vector as a function of time is r = bx̂ + ctŷ + dt2ẑ,
where b, c, and d are positive constants.
(a) What units would b, c, and d need to have for the equation to
make sense?
(b) Find the bullet’s velocity and acceleration as functions of time.
(c) Give physical interpretations of b, c, d, x̂, ŷ, and ẑ.

7 The figure shows an experiment in which a cart is released from
rest at A, and accelerates down the slope through a distance x until
it passes through a sensor’s light beam. The point of the experiment
is to determine the cart’s acceleration. At B, a cardboard vane
mounted on the cart enters the light beam, blocking the light beam,
and starts an electronic timer running. At C, the vane emerges from
the beam, and the timer stops.
(a) Find the final velocity of the cart in terms of the width w of
the vane and the time tb for which the sensor’s light beam was
blocked.

√

(b) Find the magnitude of the cart’s acceleration in terms of the
measurable quantities x, tb, and w.

√

(c) Analyze the forces in which the cart participates, using a table in
the format introduced in section 5.3. Assume friction is negligible.
(d) Find a theoretical value for the acceleration of the cart, which
could be compared with the experimentally observed value extracted
in part b. Express the theoretical value in terms of the angle θ of
the slope, and the strength g of the gravitational field.

√

8 A person of mass M stands in the middle of a tightrope,
which is fixed at the ends to two buildings separated by a horizontal
distance L. The rope sags in the middle, stretching and lengthening
the rope slightly.
(a) If the tightrope walker wants the rope to sag vertically by no
more than a height h, find the minimum tension, T , that the rope
must be able to withstand without breaking, in terms of h, g, M ,
and L.

√

(b) Based on your equation, explain why it is not possible to get
h = 0, and give a physical interpretation.

Problem 8.
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Problem 9.

Problem 11.

9 A cargo plane has taken off from a tiny airstrip in the Andes,
and is climbing at constant speed, at an angle of θ=17◦with respect
to horizontal. Its engines supply a thrust of Fthrust = 200 kN, and
the lift from its wings is Flift = 654 kN. Assume that air resistance
(drag) is negligible, so the only forces acting are thrust, lift, and
weight. What is its mass, in kg? . Solution, p. 516

10 A skier of mass m is coasting down a slope inclined at
an angle θ compared to horizontal. Assume for simplicity that the
treatment of kinetic friction given in chapter 5 is appropriate here,
although a soft and wet surface actually behaves a little differently.
The coefficient of kinetic friction acting between the skis and the
snow is µk, and in addition the skier experiences an air friction
force of magnitude bv2, where b is a constant.
(a) Find the maximum speed that the skier will attain, in terms of
the variables m, g, θ, µk, and b.

√

(b) For angles below a certain minimum angle θmin, the equation
gives a result that is not mathematically meaningful. Find an equa-
tion for θmin, and give a physical explanation of what is happening
for θ < θmin.

√

11 Your hand presses a block of mass m against a wall with
a force FH acting at an angle θ, as shown in the figure. Find the
minimum and maximum possible values of |FH | that can keep the
block stationary, in terms of m, g, θ, and µs, the coefficient of static
friction between the block and the wall. Check both your answers
in the case of θ = 90◦, and interpret the case where the maximum
force is infinite.

√

12 Driving down a hill inclined at an angle θ with respect to
horizontal, you slam on the brakes to keep from hitting a deer. Your
antilock brakes kick in, and you don’t skid.
(a) Analyze the forces. (Ignore rolling resistance and air friction.)
(b) Find the car’s maximum possible deceleration, a (expressed as
a positive number), in terms of g, θ, and the relevant coefficient of
friction.

√

(c) Explain physically why the car’s mass has no effect on your
answer.
(d) Discuss the mathematical behavior and physical interpretation
of your result for negative values of θ.
(e) Do the same for very large positive values of θ.
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Problem 14.

Problem 15 (Millikan and Gale,
1920).

Problem 16.

13 The angle of repose is the maximum slope on which an object
will not slide. On airless, geologically inert bodies like the moon or
an asteroid, the only thing that determines whether dust or rubble
will stay on a slope is whether the slope is less steep than the angle
of repose.
(a) Find an equation for the angle of repose, deciding for yourself
what are the relevant variables.
(b) On an asteroid, where g can be thousands of times lower than
on Earth, would rubble be able to lie at a steeper angle of repose?

. Solution, p. 516

14 A wagon is being pulled at constant speed up a slope θ by a
rope that makes an angle φ with the vertical.
(a) Assuming negligible friction, show that the tension in the rope
is given by the equation

FT =
sin θ

sin(θ + φ)
FW ,

where FW is the weight force acting on the wagon.
(b) Interpret this equation in the special cases of φ = 0 and φ =
180◦ − θ. . Solution, p. 516

15 The figure shows a boy hanging in three positions: (1) with
his arms straight up, (2) with his arms at 45 degrees, and (3) with
his arms at 60 degrees with respect to the vertical. Compare the
tension in his arms in the three cases.

16 For safety, mountain climbers often wear a climbing harness
and tie in to other climbers on a rope team or to anchors such as
pitons or snow anchors. When using anchors, the climber usually
wants to tie in to more than one, both for extra strength and for
redundancy in case one fails. The figure shows such an arrangement,
with the climber hanging from a pair of anchors forming a “Y’ at
an angle θ. The usual advice is to make θ < 90◦; for large values of
θ, the stress placed on the anchors can be many times greater than
the actual load L, so that two anchors are actually less safe than
one.
(a) Find the force S at each anchor in terms of L and θ.

√

(b) Verify that your answer makes sense in the case of θ = 0.
(c) Interpret your answer in the case of θ = 180◦.
(d) What is the smallest value of θ for which S exceeds L, so that a
failure of at least one anchor is more likely than it would have been
with a single anchor?

√
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Problem 17.

Problem 18.

Problem 19.

Problem 20.

Problem 21.

17 (a) A block is sitting on a wedge inclined at an angle θ
with respect to horizontal. Someone grabs the wedge and moves
it horizontally with acceleration a. The motion is in the direction
shown by the arrow in the figure. Find the maximum acceleration
that can be applied without causing the block to slide downhill.

√

(b) Show that your answer to part a has the right units.
(c) Show that it also has the right dependence on θ, by comparing
its mathematical behavior to its physically expected behavior.

18 The two blocks shown in the figure have equal mass, m, and
the surface is frictionless. (a) What is the tension in the massless
rope? . Hint, p. 508

√

(b) Show that the units of your answer make sense.
(c) Check the physical behavior of your answer in the special cases
of φ ≤ θ and θ = 0, φ = 90◦.

19 The photo shows a coil of rope wound around a smooth metal
post. A large amount of tension is applied at the bottom of the coil,
but only a tiny force, supplied by a piece of sticky tape, is needed
at the top to keep the rope from slipping. Show that the ratio of
these two forces increases exponentially with the number of turns of
rope, and find an expression for that ratio. . Hint, p. 508

√
?

20 Two wheels of radius r rotate in the same vertical plane with
angular velocities +Ω and −Ω about axes that are parallel and at
the same height. The wheels touch one another at a point on their
circumferences, so that their rotations mesh like gears in a gear train.
A board is laid on top of the wheels, so that two friction forces act
upon it, one from each wheel. Characterize the three qualitatively
different types of motion that the board can exhibit, depending on
the initial conditions. ?

21 (a) The person with mass m hangs from the rope, hauling the
box of mass M up a slope inclined at an angle θ. There is friction
between the box and the slope, described by the usual coefficients
of friction. The pulley, however, is frictionless. Find the magnitude
of the box’s acceleration.

√

(b) Show that the units of your answer make sense.
(c) Check the physical behavior of your answer in the special cases
of M = 0 and θ = −90◦.

228 Chapter 8 Vectors and motion



Problems 229



Exercise 8: Vectors and motion
Each diagram on page 231 shows the motion of an object in an x − y plane. Each dot is one
location of the object at one moment in time. The time interval from one dot to the next is
always the same, so you can think of the vector that connects one dot to the next as a v vector,
and subtract to find ∆v vectors.

1. Suppose the object in diagram 1 is moving from the top left to the bottom right. Deduce
whatever you can about the force acting on it. Does the force always have the same magnitude?
The same direction?

Invent a physical situation that this diagram could represent.

What if you reinterpret the diagram by reversing the object’s direction of motion? Redo the
construction of one of the ∆v vectors and see what happens.

2. What can you deduce about the force that is acting in diagram 2?

Invent a physical situation that diagram 2 could represent.

3. What can you deduce about the force that is acting in diagram 3?

Invent a physical situation.
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Chapter 9

Circular motion

9.1 Conceptual framework
I now live fifteen minutes from Disneyland, so my friends and family
in my native Northern California think it’s a little strange that I’ve
never visited the Magic Kingdom again since a childhood trip to the
south. The truth is that for me as a preschooler, Disneyland was
not the Happiest Place on Earth. My mother took me on a ride in
which little cars shaped like rocket ships circled rapidly around a
central pillar. I knew I was going to die. There was a force trying to
throw me outward, and the safety features of the ride would surely
have been inadequate if I hadn’t screamed the whole time to make
sure Mom would hold on to me. Afterward, she seemed surprisingly
indifferent to the extreme danger we had experienced.

Circular motion does not produce an outward force

My younger self’s understanding of circular motion was partly
right and partly wrong. I was wrong in believing that there was a
force pulling me outward, away from the center of the circle. The
easiest way to understand this is to bring back the parable of the
bowling ball in the pickup truck from chapter 4. As the truck makes
a left turn, the driver looks in the rearview mirror and thinks that
some mysterious force is pulling the ball outward, but the truck
is accelerating, so the driver’s frame of reference is not an inertial
frame. Newton’s laws are violated in a noninertial frame, so the ball
appears to accelerate without any actual force acting on it. Because
we are used to inertial frames, in which accelerations are caused by
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b / This crane fly’s halteres
help it to maintain its orientation
in flight.

forces, the ball’s acceleration creates a vivid illusion that there must
be an outward force.

a / 1. In the turning truck’s frame
of reference, the ball appears
to violate Newton’s laws, dis-
playing a sideways acceleration
that is not the result of a force-
interaction with any other object.
2. In an inertial frame of refer-
ence, such as the frame fixed to
the earth’s surface, the ball obeys
Newton’s first law. No forces are
acting on it, and it continues mov-
ing in a straight line. It is the truck
that is participating in an interac-
tion with the asphalt, the truck that
accelerates as it should according
to Newton’s second law. In an inertial frame everything makes more sense. The ball has

no force on it, and goes straight as required by Newton’s first law.
The truck has a force on it from the asphalt, and responds to it
by accelerating (changing the direction of its velocity vector) as
Newton’s second law says it should.

The halteres example 1
Another interesting example is an insect organ called the hal-
teres, a pair of small knobbed limbs behind the wings, which vi-
brate up and down and help the insect to maintain its orientation
in flight. The halteres evolved from a second pair of wings pos-
sessed by earlier insects. Suppose, for example, that the halteres
are on their upward stroke, and at that moment an air current
causes the fly to pitch its nose down. The halteres follow New-
ton’s first law, continuing to rise vertically, but in the fly’s rotating
frame of reference, it seems as though they have been subjected
to a backward force. The fly has special sensory organs that per-
ceive this twist, and help it to correct itself by raising its nose.

Circular motion does not persist without a force

I was correct, however, on a different point about the Disneyland
ride. To make me curve around with the car, I really did need some
force such as a force from my mother, friction from the seat, or a
normal force from the side of the car. (In fact, all three forces were
probably adding together.) One of the reasons why Galileo failed to
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c / 1. An overhead view of a per-
son swinging a rock on a rope. A
force from the string is required
to make the rock’s velocity vector
keep changing direction. 2. If the
string breaks, the rock will follow
Newton’s first law and go straight
instead of continuing around the
circle.

refine the principle of inertia into a quantitative statement like New-
ton’s first law is that he was not sure whether motion without a force
would naturally be circular or linear. In fact, the most impressive
examples he knew of the persistence of motion were mostly circular:
the spinning of a top or the rotation of the earth, for example. New-
ton realized that in examples such as these, there really were forces
at work. Atoms on the surface of the top are prevented from flying
off straight by the ordinary force that keeps atoms stuck together in
solid matter. The earth is nearly all liquid, but gravitational forces
pull all its parts inward.

Uniform and nonuniform circular motion

Circular motion always involves a change in the direction of the
velocity vector, but it is also possible for the magnitude of the ve-
locity to change at the same time. Circular motion is referred to as
uniform if |v| is constant, and nonuniform if it is changing.

Your speedometer tells you the magnitude of your car’s velocity
vector, so when you go around a curve while keeping your speedome-
ter needle steady, you are executing uniform circular motion. If your
speedometer reading is changing as you turn, your circular motion
is nonuniform. Uniform circular motion is simpler to analyze math-
ematically, so we will attack it first and then pass to the nonuniform
case.

self-check A
Which of these are examples of uniform circular motion and which are
nonuniform?

(1) the clothes in a clothes dryer (assuming they remain against the
inside of the drum, even at the top)

(2) a rock on the end of a string being whirled in a vertical circle .

Answer, p. 525
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d / To make the brick go in a
circle, I had to exert an inward
force on the rope.

f / When a car is going straight
at constant speed, the forward
and backward forces on it are
canceling out, producing a total
force of zero. When it moves
in a circle at constant speed,
there are three forces on it, but
the forward and backward forces
cancel out, so the vector sum is
an inward force.

Only an inward force is required for uniform circular motion.

Figure c showed the string pulling in straight along a radius of
the circle, but many people believe that when they are doing this
they must be “leading” the rock a little to keep it moving along.
That is, they believe that the force required to produce uniform
circular motion is not directly inward but at a slight angle to the
radius of the circle. This intuition is incorrect, which you can easily
verify for yourself now if you have some string handy. It is only
while you are getting the object going that your force needs to be at
an angle to the radius. During this initial period of speeding up, the
motion is not uniform. Once you settle down into uniform circular
motion, you only apply an inward force.

If you have not done the experiment for yourself, here is a theo-
retical argument to convince you of this fact. We have discussed in
chapter 6 the principle that forces have no perpendicular effects. To
keep the rock from speeding up or slowing down, we only need to
make sure that our force is perpendicular to its direction of motion.
We are then guaranteed that its forward motion will remain unaf-
fected: our force can have no perpendicular effect, and there is no
other force acting on the rock which could slow it down. The rock
requires no forward force to maintain its forward motion, any more
than a projectile needs a horizontal force to “help it over the top”
of its arc.

e / A series of three hammer taps makes the rolling ball trace a tri-
angle, seven hammers a heptagon. If the number of hammers was large
enough, the ball would essentially be experiencing a steady inward force,
and it would go in a circle. In no case is any forward force necessary.
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g / Example 2.

Why, then, does a car driving in circles in a parking lot stop
executing uniform circular motion if you take your foot off the gas?
The source of confusion here is that Newton’s laws predict an ob-
ject’s motion based on the total force acting on it. A car driving in
circles has three forces on it

(1) an inward force from the asphalt, controlled with the steering
wheel;

(2) a forward force from the asphalt, controlled with the gas
pedal; and

(3) backward forces from air resistance and rolling resistance.

You need to make sure there is a forward force on the car so that
the backward forces will be exactly canceled out, creating a vector
sum that points directly inward.

A motorcycle making a turn example 2
The motorcyclist in figure g is moving along an arc of a circle. It
looks like he’s chosen to ride the slanted surface of the dirt at a
place where it makes just the angle he wants, allowing him to get
the force he needs on the tires as a normal force, without needing
any frictional force. The dirt’s normal force on the tires points up
and to our left. The vertical component of that force is canceled
by gravity, while its horizontal component causes him to curve.

In uniform circular motion, the acceleration vector is inward

Since experiments show that the force vector points directly
inward, Newton’s second law implies that the acceleration vector
points inward as well. This fact can also be proven on purely kine-
matical grounds, and we will do so in the next section.
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Discussion questions A-D

Discussion question E.

Discussion questions

A In the game of crack the whip, a line of people stand holding hands,
and then they start sweeping out a circle. One person is at the center, and
rotates without changing location. At the opposite end is the person who
is running the fastest, in a wide circle. In this game, someone always ends
up losing their grip and flying off. Suppose the person on the end loses
her grip. What path does she follow as she goes flying off? (Assume she
is going so fast that she is really just trying to put one foot in front of the
other fast enough to keep from falling; she is not able to get any significant
horizontal force between her feet and the ground.)

B Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What force or forces are acting
on her, and in what directions are they? (We are not interested in the
vertical forces, which are the earth’s gravitational force pulling down, and
the ground’s normal force pushing up.)

C Suppose the person on the outside is still holding on, but feels that
she may loose her grip at any moment. What is wrong with the following
analysis of the situation? “The person whose hand she’s holding exerts
an inward force on her, and because of Newton’s third law, there’s an
equal and opposite force acting outward. That outward force is the one
she feels throwing her outward, and the outward force is what might make
her go flying off, if it’s strong enough.”

D If the only force felt by the person on the outside is an inward force,
why doesn’t she go straight in?

E In the amusement park ride shown in the figure, the cylinder spins
faster and faster until the customer can pick her feet up off the floor with-
out falling. In the old Coney Island version of the ride, the floor actually
dropped out like a trap door, showing the ocean below. (There is also a
version in which the whole thing tilts up diagonally, but we’re discussing
the version that stays flat.) If there is no outward force acting on her, why
does she stick to the wall? Analyze all the forces on her.

F What is an example of circular motion where the inward force is a
normal force? What is an example of circular motion where the inward
force is friction? What is an example of circular motion where the inward
force is the sum of more than one force?

G Does the acceleration vector always change continuously in circular
motion? The velocity vector?
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h / This figure shows an intu-
itive justification for the fact
proved mathematically in this
section, that the direction of the
force and acceleration in circular
motion is inward. The heptagon,
2, is a better approximation to
a circle than the triangle, 1. To
make an infinitely good approx-
imation to circular motion, we
would need to use an infinitely
large number of infinitesimal taps,
which would amount to a steady
inward force.

i / The total force in the forward-
backward direction is zero in both
cases.

9.2 Uniform circular motion
In this section I derive some convenient results, which you will use
frequently, for the acceleration of an object performing uniform cir-
cular motion.

An object moving in a circle of radius r in the x-y plane has

x = r cos ωt and

y = r sin ωt ,

where ω is the number of radians traveled per second, and the pos-
itive or negative sign indicates whether the motion is clockwise or
counterclockwise.

Differentiating, we find that the components of the velocity are

vx = −ωr sin ωt and

vy = ωr cos ωt ,

and for the acceleration we have

ax = −ω2r cos ωt and

ay = −ω2r sin ωt .

The acceleration vector has cosines and sines in the same places
as the r vector, but with minus signs in front, so it points in the
opposite direction, i.e., toward the center of the circle. By Newton’s
second law, a=F/m, this shows that the force must be inward as
well; without this force, the object would fly off straight.

The magnitude of the acceleration is

|a| =
√
a2
x + a2

y

= ω2r .

It makes sense that ω is squared, since reversing the sign of ω cor-
responds to reversing the direction of motion, but the acceleration
is toward the center of the circle, regardless of whether the motion
is clockwise or counterclockwise. This result can also be rewritten
in the form

|a| = |v|
2

r
.

These results are counterintuitive. Until Newton, physicists and
laypeople alike had assumed that the planets would need a force
to push them forward in their orbits. Figure h may help to make
it more plausible that only an inward force is required. A forward
force might be needed in order to cancel out a backward force such
as friction, i, but the total force in the forward-backward direction
needs to be exactly zero for constant-speed motion. When you are in
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j / There is no outward force
on the bowling ball, but in the
noninertial frame it seems like
one exists.

a car undergoing circular motion, there is also a strong illusion of an
outward force. But what object could be making such a force? The
car’s seat makes an inward force on you, not an outward one. There
is no object that could be exerting an outward force on your body.
In reality, this force is an illusion that comes from our brain’s intu-
itive efforts to interpret the situation within a noninertial frame of
reference. As shown in figure j, we can describe everything perfectly
well in an inertial frame of reference, such as the frame attached to
the sidewalk. In such a frame, the bowling ball goes straight because
there is no force on it. The wall of the truck’s bed hits the ball, not
the other way around.

Force required to turn on a bike example 3
. A bicyclist is making a turn along an arc of a circle with radius
20 m, at a speed of 5 m/s. If the combined mass of the cyclist
plus the bike is 60 kg, how great a static friction force must the
road be able to exert on the tires?

. Taking the magnitudes of both sides of Newton’s second law
gives

|F| = |ma|
= m|a| .

Substituting |a| = |v|2/r gives

|F| = m|v|2/r
≈ 80 N

(rounded off to one sig fig).

Don’t hug the center line on a curve! example 4
. You’re driving on a mountain road with a steep drop on your
right. When making a left turn, is it safer to hug the center line or
to stay closer to the outside of the road?

. You want whichever choice involves the least acceleration, be-
cause that will require the least force and entail the least risk of
exceeding the maximum force of static friction. Assuming the
curve is an arc of a circle and your speed is constant, your car
is performing uniform circular motion, with |a| = |v|2/r . The de-
pendence on the square of the speed shows that driving slowly
is the main safety measure you can take, but for any given speed
you also want to have the largest possible value of r . Even though
your instinct is to keep away from that scary precipice, you are ac-
tually less likely to skid if you keep toward the outside, because
then you are describing a larger circle.

Acceleration related to radius and period of rotation example 5
. How can the equation for the acceleration in uniform circular
motion be rewritten in terms of the radius of the circle and the
period, T , of the motion, i.e., the time required to go around once?
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k / Example 6.

. The period can be related to the speed as follows:

|v| = circumference
T

= 2πr/T .

Substituting into the equation |a| = |v|2/r gives

|a| = 4π2r
T 2 .

A clothes dryer example 6
. My clothes dryer has a drum with an inside radius of 35 cm, and
it spins at 48 revolutions per minute. What is the acceleration of
the clothes inside?

. We can solve this by finding the period and plugging in to the
result of the previous example. If it makes 48 revolutions in one
minute, then the period is 1/48 of a minute, or 1.25 s. To get an
acceleration in mks units, we must convert the radius to 0.35 m.
Plugging in, the result is 8.8 m/s2.

More about clothes dryers! example 7
. In a discussion question in the previous section, we made the
assumption that the clothes remain against the inside of the drum
as they go over the top. In light of the previous example, is this a
correct assumption?

. No. We know that there must be some minimum speed at which
the motor can run that will result in the clothes just barely stay-
ing against the inside of the drum as they go over the top. If the
clothes dryer ran at just this minimum speed, then there would be
no normal force on the clothes at the top: they would be on the
verge of losing contact. The only force acting on them at the top
would be the force of gravity, which would give them an acceler-
ation of g = 9.8 m/s2. The actual dryer must be running slower
than this minimum speed, because it produces an acceleration of
only 8.8 m/s2. My theory is that this is done intentionally, to make
the clothes mix and tumble.

. Solved problem: The tilt-a-whirl page 245, problem 3

. Solved problem: An off-ramp page 246, problem 5

Discussion questions

A A certain amount of force is needed to provide the acceleration of
circular motion. What if were are exerting a force perpendicular to the
direction of motion in an attempt to make an object trace a circle of radius
r , but the force isn’t as big as m|v|2/r?

B Suppose a rotating space station, as in figure l on page 242, is built.
It gives its occupants the illusion of ordinary gravity. What happens when
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m / 1. Moving in a circle while
speeding up. 2. Uniform circular
motion. 3. Slowing down.

a person in the station lets go of a ball? What happens when she throws
a ball straight “up” in the air (i.e., towards the center)?

l / Discussion question B. An artist’s conception of a rotating space colony
in the form of a giant wheel. A person living in this noninertial frame of
reference has an illusion of a force pulling her outward, toward the deck,
for the same reason that a person in the pickup truck has the illusion
of a force pulling the bowling ball. By adjusting the speed of rotation, the
designers can make an acceleration |v|2/r equal to the usual acceleration
of gravity on earth. On earth, your acceleration standing on the ground
is zero, and a falling rock heads for your feet with an acceleration of 9.8
m/s2. A person standing on the deck of the space colony has an upward
acceleration of 9.8 m/s2, and when she lets go of a rock, her feet head up
at the nonaccelerating rock. To her, it seems the same as true gravity.

9.3 Nonuniform circular motion

What about nonuniform circular motion? Although so far we
have been discussing components of vectors along fixed x and y
axes, it now becomes convenient to discuss components of the accel-
eration vector along the radial line (in-out) and the tangential line
(along the direction of motion). For nonuniform circular motion,
the radial component of the acceleration obeys the same equation
as for uniform circular motion,

ar = v2/r ,

where v = |v|, but the acceleration vector also has a tangential
component,

at =
dv

dt
.

The latter quantity has a simple interpretation. If you are going
around a curve in your car, and the speedometer needle is mov-
ing, the tangential component of the acceleration vector is simply
what you would have thought the acceleration was if you saw the
speedometer and didn’t know you were going around a curve.

Slow down before a turn, not during it. example 8
. When you’re making a turn in your car and you’re afraid you
may skid, isn’t it a good idea to slow down?

. If the turn is an arc of a circle, and you’ve already completed
part of the turn at constant speed without skidding, then the road
and tires are apparently capable of enough static friction to sup-
ply an acceleration of |v|2/r . There is no reason why you would
skid out now if you haven’t already. If you get nervous and brake,
however, then you need to have a tangential acceleration com-
ponent in addition to the radial component you were already able
to produce successfully. This would require an acceleration vec-
tor with a greater magnitude, which in turn would require a larger
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force. Static friction might not be able to supply that much force,
and you might skid out. As in the previous example on a similar
topic, the safe thing to do is to approach the turn at a comfortably
low speed.

. Solved problem: A bike race page 247, problem 10
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Summary
Selected vocabulary
uniform circular
motion . . . . . .

circular motion in which the magnitude of the
velocity vector remains constant

nonuniform circu-
lar motion . . . .

circular motion in which the magnitude of the
velocity vector changes

radial . . . . . . . parallel to the radius of a circle; the in-out
direction

tangential . . . . tangent to the circle, perpendicular to the ra-
dial direction

Notation
ar . . . . . . . . . radial acceleration; the component of the ac-

celeration vector along the in-out direction
at . . . . . . . . . tangential acceleration; the component of the

acceleration vector tangent to the circle

Summary

If an object is to have circular motion, a force must be exerted on
it toward the center of the circle. There is no outward force on the
object; the illusion of an outward force comes from our experiences
in which our point of view was rotating, so that we were viewing
things in a noninertial frame.

An object undergoing uniform circular motion has an inward
acceleration vector of magnitude

|a| = v2/r ,

where v = |v|. In nonuniform circular motion, the radial and tan-
gential components of the acceleration vector are

ar = v2/r

at =
dv

dt
.
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Problem 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Show that the expression |v|2/r has the units of acceleration.

2 A plane is flown in a loop-the-loop of radius 1.00 km. The
plane starts out flying upside-down, straight and level, then begins
curving up along the circular loop, and is right-side up when it
reaches the top. (The plane may slow down somewhat on the way
up.) How fast must the plane be going at the top if the pilot is to
experience no force from the seat or the seatbelt while at the top of
the loop?

√

3 The amusement park ride shown in the figure consists of a
cylindrical room that rotates about its vertical axis. When the ro-
tation is fast enough, a person against the wall can pick his or her
feet up off the floor and remain “stuck” to the wall without falling.
(a) Suppose the rotation results in the person having a speed v. The
radius of the cylinder is r, the person’s mass is m, the downward
acceleration of gravity is g, and the coefficient of static friction be-
tween the person and the wall is µs. Find an equation for the speed,
v, required, in terms of the other variables. (You will find that one
of the variables cancels out.)
(b) Now suppose two people are riding the ride. Huy is wearing
denim, and Gina is wearing polyester, so Huy’s coefficient of static
friction is three times greater. The ride starts from rest, and as it
begins rotating faster and faster, Gina must wait longer before being
able to lift her feet without sliding to the floor. Based on your equa-
tion from part a, how many times greater must the speed be before
Gina can lift her feet without sliding down? . Solution, p. 517 ?

4 The bright star Sirius has a mass of 4.02 × 1030 kg and lies
at a distance of 8.1× 1016 m from our solar system. Suppose you’re
standing on a merry-go-round carousel rotating with a period of 10
seconds, and Sirius is on the horizon. You adopt a rotating, non-
inertial frame of reference, in which the carousel is at rest, and the
universe is spinning around it. If you drop a corndog, you see it ac-
celerate horizontally away from the axis, and you interpret this is the
result of some horizontal force. This force does not actually exist;
it only seems to exist because you’re insisting on using a noninertial
frame. Similarly, calculate the force that seems to act on Sirius in
this frame of reference. Comment on the physical plausibility of this
force, and on what object could be exerting it.

√
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Problem 5.

Problem 7.

5 An engineer is designing a curved off-ramp for a freeway.
Since the off-ramp is curved, she wants to bank it to make it less
likely that motorists going too fast will wipe out. If the radius of
the curve is r, how great should the banking angle, θ, be so that
for a car going at a speed v, no static friction force whatsoever is
required to allow the car to make the curve? State your answer in
terms of v, r, and g, and show that the mass of the car is irrelevant.

. Solution, p. 518

6 Lionel brand toy trains come with sections of track in standard
lengths and shapes. For circular arcs, the most commonly used
sections have diameters of 662 and 1067 mm at the inside of the outer
rail. The maximum speed at which a train can take the broader
curve without flying off the tracks is 0.95 m/s. At what speed must
the train be operated to avoid derailing on the tighter curve?

√

7 Psychology professor R.O. Dent requests funding for an exper-
iment on compulsive thrill-seeking behavior in guinea pigs, in which
the subject is to be attached to the end of a spring and whirled
around in a horizontal circle. The spring has relaxed length b, and
obeys Hooke’s law with spring constant k. It is stiff enough to keep
from bending significantly under the guinea pig’s weight.
(a) Calculate the length of the spring when it is undergoing steady
circular motion in which one rotation takes a time T . Express your
result in terms of k, b, T , and the guinea pig’s mass m.

√

(b) The ethics committee somehow fails to veto the experiment, but
the safety committee expresses concern. Why? Does your equa-
tion do anything unusual, or even spectacular, for any particular
value of T? What do you think is the physical significance of this
mathematical behavior?

8 The acceleration of an object in uniform circular motion can be
given either by |a| = |v|2/r or, equivalently, by |a| = 4π2r/T 2, where
T is the time required for one cycle (example 5 on page 240). Person
A says based on the first equation that the acceleration in circular
motion is greater when the circle is smaller. Person B, arguing from
the second equation, says that the acceleration is smaller when the
circle is smaller. Rewrite the two statements so that they are less
misleading, eliminating the supposed paradox. [Based on a problem
by Arnold Arons.]
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Problem 9.

Problem 10.

Problem 11.

Problem 12.

9 When you’re done using an electric mixer, you can get most
of the batter off of the beaters by lifting them out of the batter with
the motor running at a high enough speed. Let’s imagine, to make
things easier to visualize, that we instead have a piece of tape stuck
to one of the beaters.
(a) Explain why static friction has no effect on whether or not the
tape flies off.
(b) Analyze the forces in which the tape participates, using a table
the format shown in section 5.3. (c) Suppose you find that the tape
doesn’t fly off when the motor is on a low speed, but at a greater
speed, the tape won’t stay on. Why would the greater speed change
things? [Hint: If you don’t invoke any law of physics, you haven’t
explained it.]

10 Three cyclists in a race are rounding a semicircular curve.
At the moment depicted, cyclist A is using her brakes to apply a
force of 375 N to her bike. Cyclist B is coasting. Cyclist C is
pedaling, resulting in a force of 375 N on her bike Each cyclist,
with her bike, has a mass of 75 kg. At the instant shown, the
instantaneous speed of all three cyclists is 10 m/s. On the diagram,
draw each cyclist’s acceleration vector with its tail on top of her
present position, indicating the directions and lengths reasonably
accurately. Indicate approximately the consistent scale you are using
for all three acceleration vectors. Extreme precision is not necessary
as long as the directions are approximately right, and lengths of
vectors that should be equal appear roughly equal, etc. Assume all
three cyclists are traveling along the road all the time, not wandering
across their lane or wiping out and going off the road.

. Solution, p. 518

11 The figure shows a ball on the end of a string of length L
attached to a vertical rod which is spun about its vertical axis by a
motor. The period (time for one rotation) is P .
(a) Analyze the forces in which the ball participates.
(b) Find how the angle θ depends on P , g, and L. [Hints: (1)
Write down Newton’s second law for the vertical and horizontal
components of force and acceleration. This gives two equations,
which can be solved for the two unknowns, θ and the tension in
the string. (2) If you introduce variables like v and r, relate them
to the variables your solution is supposed to contain, and eliminate
them.]

√

(c) What happens mathematically to your solution if the motor is
run very slowly (very large values of P )? Physically, what do you
think would actually happen in this case?

12 The figure shows two blocks of masses m1 and m2 sliding
in circles on a frictionless table. Find the tension in the strings if
the period of rotation (time required for one complete rotation) is
P .

√
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Problem 14.

Problem 15.

Problem 16.

13 This problem is now number 19 in ch. 12, p. 328.

14 The figure shows an old-fashioned device called a flyball
governor, used for keeping an engine running at the correct speed.
The whole thing rotates about the vertical shaft, and the mass M
is free to slide up and down. This mass would have a connection
(not shown) to a valve that controlled the engine. If, for instance,
the engine ran too fast, the mass would rise, causing the engine to
slow back down.
(a) Show that in the special case of a = 0, the angle θ is given by

θ = cos−1

(
g(m+M)P 2

4π2mL

)
,

where P is the period of rotation (time required for one complete
rotation).
(b) There is no closed-form solution for θ in the general case where
a is not zero. However, explain how the undesirable low-speed be-
havior of the a = 0 device would be improved by making a nonzero.

?

15 The vertical post rotates at frequency ω. The bead slides
freely along the string, reaching an equilibrium in which its distance
from the axis is r and the angles θ and φ have some particular values.
Find φ in terms of θ, g, ω, and r.

√
?

16 A bead slides down along a piece of wire that is in the shape
of a helix. The helix lies on the surface of a vertical cylinder of
radius r, and the vertical distance between turns is d.
(a) Ordinarily when an object slides downhill under the influence of
kinetic friction, the velocity-independence of kinetic friction implies
that the acceleration is constant, and therefore there is no limit to
the object’s velocity. Explain the physical reason why this argument
fails here, so that the bead will in fact have some limiting velocity.
(b) Find the limiting velocity.
(c) Show that your result has the correct behavior in the limit of
r →∞. [Problem by B. Korsunsky.]

√
?

17 In a well known stunt from circuses and carnivals, a motor-
cyclist rides around inside a big bowl, gradually speeding up and
rising higher. Eventually the cyclist can get up to where the walls
of the bowl are vertical. Let’s estimate the conditions under which
a running human could do the same thing.
(a) If the runner can run at speed v, and her shoes have a coefficient
of static friction µs, what is the maximum radius of the circle?

√

(b) Show that the units of your answer make sense.
(c) Check that its dependence on the variables makes sense.
(d) Evaluate your result numerically for v = 10 m/s (the speed of
an olympic sprinter) and µs = 5. (This is roughly the highest coeffi-
cient of static friction ever achieved for surfaces that are not sticky.
The surface has an array of microscopic fibers like a hair brush, and
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is inspired by the hairs on the feet of a gecko. These assumptions
are not necessarily realistic, since the person would have to run at
an angle, which would be physically awkward.)

√
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a / Johannes Kepler found a
mathematical description of the
motion of the planets, which led
to Newton’s theory of gravity.

Gravity is the only really important force on the cosmic scale. This false-
color representation of saturn’s rings was made from an image sent back
by the Voyager 2 space probe. The rings are composed of innumerable
tiny ice particles orbiting in circles under the influence of saturn’s gravity.

Chapter 10

Gravity

Cruise your radio dial today and try to find any popular song that
would have been imaginable without Louis Armstrong. By introduc-
ing solo improvisation into jazz, Armstrong took apart the jigsaw
puzzle of popular music and fit the pieces back together in a dif-
ferent way. In the same way, Newton reassembled our view of the
universe. Consider the titles of some recent physics books written
for the general reader: The God Particle, Dreams of a Final Theory.
Without Newton, such attempts at universal understanding would
not merely have seemed a little pretentious, they simply would not
have occurred to anyone.

This chapter is about Newton’s theory of gravity, which he used
to explain the motion of the planets as they orbited the sun. Whereas
this book has concentrated on Newton’s laws of motion, leaving
gravity as a dessert, Newton tosses off the laws of motion in the
first 20 pages of the Principia Mathematica and then spends the
next 130 discussing the motion of the planets. Clearly he saw this
as the crucial scientific focus of his work. Why? Because in it he
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b / Tycho Brahe made his name
as an astronomer by showing that
the bright new star, today called
a supernova, that appeared in
the skies in 1572 was far beyond
the Earth’s atmosphere. This,
along with Galileo’s discovery of
sunspots, showed that contrary
to Aristotle, the heavens were
not perfect and unchanging.
Brahe’s fame as an astronomer
brought him patronage from King
Frederick II, allowing him to carry
out his historic high-precision
measurements of the planets’
motions. A contradictory charac-
ter, Brahe enjoyed lecturing other
nobles about the evils of dueling,
but had lost his own nose in a
youthful duel and had it replaced
with a prosthesis made of an
alloy of gold and silver. Willing to
endure scandal in order to marry
a peasant, he nevertheless used
the feudal powers given to him by
the king to impose harsh forced
labor on the inhabitants of his
parishes. The result of their work,
an Italian-style palace with an
observatory on top, surely ranks
as one of the most luxurious
science labs ever built. Kepler
described Brahe as dying of a
ruptured bladder after falling from
a wagon on the way home from
a party, but other contemporary
accounts and modern medical
analysis suggest mercury poison-
ing, possibly as a result of court
intrigue.

showed that the same laws of motion applied to the heavens as to
the earth, and that the gravitational force that made an apple fall
was the same as the force that kept the earth’s motion from carrying
it away from the sun. What was radical about Newton was not his
laws of motion but his concept of a universal science of physics.

10.1 Kepler’s laws

Newton wouldn’t have been able to figure out why the planets
move the way they do if it hadn’t been for the astronomer Tycho
Brahe (1546-1601) and his protege Johannes Kepler (1571-1630),
who together came up with the first simple and accurate description
of how the planets actually do move. The difficulty of their task is
suggested by figure c, which shows how the relatively simple orbital
motions of the earth and Mars combine so that as seen from earth
Mars appears to be staggering in loops like a drunken sailor.

c / As the Earth and Mars revolve around the sun at different rates,
the combined effect of their motions makes Mars appear to trace a
strange, looped path across the background of the distant stars.

Brahe, the last of the great naked-eye astronomers, collected ex-
tensive data on the motions of the planets over a period of many
years, taking the giant step from the previous observations’ accuracy
of about 10 minutes of arc (10/60 of a degree) to an unprecedented
1 minute. The quality of his work is all the more remarkable consid-
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ering that his observatory consisted of four giant brass protractors
mounted upright in his castle in Denmark. Four different observers
would simultaneously measure the position of a planet in order to
check for mistakes and reduce random errors.

With Brahe’s death, it fell to his former assistant Kepler to try
to make some sense out of the volumes of data. Kepler, in con-
tradiction to his late boss, had formed a prejudice, a correct one
as it turned out, in favor of the theory that the earth and planets
revolved around the sun, rather than the earth staying fixed and
everything rotating about it. Although motion is relative, it is not
just a matter of opinion what circles what. The earth’s rotation
and revolution about the sun make it a noninertial reference frame,
which causes detectable violations of Newton’s laws when one at-
tempts to describe sufficiently precise experiments in the earth-fixed
frame. Although such direct experiments were not carried out until
the 19th century, what convinced everyone of the sun-centered sys-
tem in the 17th century was that Kepler was able to come up with
a surprisingly simple set of mathematical and geometrical rules for
describing the planets’ motion using the sun-centered assumption.
After 900 pages of calculations and many false starts and dead-end
ideas, Kepler finally synthesized the data into the following three
laws:

Kepler’s elliptical orbit law
The planets orbit the sun in elliptical orbits with the sun at
one focus.

Kepler’s equal-area law
The line connecting a planet to the sun sweeps out equal areas
in equal amounts of time.

Kepler’s law of periods
The time required for a planet to orbit the sun, called its
period, is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Although the planets’ orbits are ellipses rather than circles, most
are very close to being circular. The earth’s orbit, for instance, is
only flattened by 1.7% relative to a circle. In the special case of a
planet in a circular orbit, the two foci (plural of “focus”) coincide
at the center of the circle, and Kepler’s elliptical orbit law thus says
that the circle is centered on the sun. The equal-area law implies
that a planet in a circular orbit moves around the sun with constant
speed. For a circular orbit, the law of periods then amounts to a
statement that the time for one orbit is proportional to r3/2, where
r is the radius. If all the planets were moving in their orbits at the
same speed, then the time for one orbit would simply depend on
the circumference of the circle, so it would only be proportional to
r to the first power. The more drastic dependence on r3/2 means
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d / An ellipse is a circle that
has been distorted by shrinking
and stretching along perpendicu-
lar axes.

e / An ellipse can be con-
structed by tying a string to two
pins and drawing like this with the
pencil stretching the string taut.
Each pin constitutes one focus of
the ellipse.

f / If the time interval taken
by the planet to move from P to Q
is equal to the time interval from
R to S, then according to Kepler’s
equal-area law, the two shaded
areas are equal. The planet
is moving faster during interval
RS than it did during PQ, which
Newton later determined was due
to the sun’s gravitational force
accelerating it. The equal-area
law predicts exactly how much it
will speed up.

that the outer planets must be moving more slowly than the inner
planets.

10.2 Newton’s law of gravity
The sun’s force on the planets obeys an inverse square law.

Kepler’s laws were a beautifully simple explanation of what the
planets did, but they didn’t address why they moved as they did.
Did the sun exert a force that pulled a planet toward the center of
its orbit, or, as suggested by Descartes, were the planets circulating
in a whirlpool of some unknown liquid? Kepler, working in the
Aristotelian tradition, hypothesized not just an inward force exerted
by the sun on the planet, but also a second force in the direction
of motion to keep the planet from slowing down. Some speculated
that the sun attracted the planets magnetically.

Once Newton had formulated his laws of motion and taught
them to some of his friends, they began trying to connect them
to Kepler’s laws. It was clear now that an inward force would be
needed to bend the planets’ paths. This force was presumably an
attraction between the sun and each planet. (Although the sun does
accelerate in response to the attractions of the planets, its mass is so
great that the effect had never been detected by the prenewtonian
astronomers.) Since the outer planets were moving slowly along
more gently curving paths than the inner planets, their accelerations
were apparently less. This could be explained if the sun’s force was
determined by distance, becoming weaker for the farther planets.
Physicists were also familiar with the noncontact forces of electricity
and magnetism, and knew that they fell off rapidly with distance,
so this made sense.

In the approximation of a circular orbit, the magnitude of the
sun’s force on the planet would have to be

[1] F = ma = mv2/r .

Now although this equation has the magnitude, v, of the velocity
vector in it, what Newton expected was that there would be a more
fundamental underlying equation for the force of the sun on a planet,
and that that equation would involve the distance, r, from the sun
to the object, but not the object’s speed, v — motion doesn’t make
objects lighter or heavier.

self-check A
If eq. [1] really was generally applicable, what would happen to an
object released at rest in some empty region of the solar system? .

Answer, p. 525

Equation [1] was thus a useful piece of information which could
be related to the data on the planets simply because the planets
happened to be going in nearly circular orbits, but Newton wanted
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g / The moon’s acceleration
is 602 = 3600 times smaller than
the apple’s.

to combine it with other equations and eliminate v algebraically in
order to find a deeper truth.

To eliminate v, Newton used the equation

[2] v =
circumference

T
=

2πr

T
.

Of course this equation would also only be valid for planets in nearly
circular orbits. Plugging this into eq. [1] to eliminate v gives

[3] F =
4π2mr

T 2
.

This unfortunately has the side-effect of bringing in the period, T ,
which we expect on similar physical grounds will not occur in the
final answer. That’s where the circular-orbit case, T ∝ r3/2, of
Kepler’s law of periods comes in. Using it to eliminate T gives a
result that depends only on the mass of the planet and its distance
from the sun:

F ∝ m/r2 . [force of the sun on a planet of mass

m at a distance r from the sun; same

proportionality constant for all the planets]

(Since Kepler’s law of periods is only a proportionality, the final
result is a proportionality rather than an equation, so there is no
point in hanging on to the factor of 4π2.)

As an example, the “twin planets” Uranus and Neptune have
nearly the same mass, but Neptune is about twice as far from the
sun as Uranus, so the sun’s gravitational force on Neptune is about
four times smaller.

self-check B
Fill in the steps leading from equation [3] to F ∝ m/r2. . Answer, p.
526

The forces between heavenly bodies are the same type of
force as terrestrial gravity.

OK, but what kind of force was it? It probably wasn’t magnetic,
since magnetic forces have nothing to do with mass. Then came
Newton’s great insight. Lying under an apple tree and looking up
at the moon in the sky, he saw an apple fall. Might not the earth
also attract the moon with the same kind of gravitational force?
The moon orbits the earth in the same way that the planets orbit
the sun, so maybe the earth’s force on the falling apple, the earth’s
force on the moon, and the sun’s force on a planet were all the same
type of force.

There was an easy way to test this hypothesis numerically. If it
was true, then we would expect the gravitational forces exerted by
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the earth to follow the same F ∝ m/r2 rule as the forces exerted by
the sun, but with a different constant of proportionality appropriate
to the earth’s gravitational strength. The issue arises now of how to
define the distance, r, between the earth and the apple. An apple
in England is closer to some parts of the earth than to others, but
suppose we take r to be the distance from the center of the earth to
the apple, i.e., the radius of the earth. (The issue of how to measure
r did not arise in the analysis of the planets’ motions because the
sun and planets are so small compared to the distances separating
them.) Calling the proportionality constant k, we have

Fearth on apple = k mapple/r
2
earth

Fearth on moon = k mmoon/d
2
earth-moon .

Newton’s second law says a = F/m, so

aapple = k / r2
earth

amoon = k / d2
earth-moon .

The Greek astronomer Hipparchus had already found 2000 years
before that the distance from the earth to the moon was about 60
times the radius of the earth, so if Newton’s hypothesis was right,
the acceleration of the moon would have to be 602 = 3600 times less
than the acceleration of the falling apple.

Applying a = v2/r to the acceleration of the moon yielded an
acceleration that was indeed 3600 times smaller than 9.8 m/s2, and
Newton was convinced he had unlocked the secret of the mysterious
force that kept the moon and planets in their orbits.

Newton’s law of gravity

The proportionality F ∝ m/r2 for the gravitational force on an
object of mass m only has a consistent proportionality constant for
various objects if they are being acted on by the gravity of the same
object. Clearly the sun’s gravitational strength is far greater than
the earth’s, since the planets all orbit the sun and do not exhibit
any very large accelerations caused by the earth (or by one another).
What property of the sun gives it its great gravitational strength?
Its great volume? Its great mass? Its great temperature? Newton
reasoned that if the force was proportional to the mass of the object
being acted on, then it would also make sense if the determining
factor in the gravitational strength of the object exerting the force
was its own mass. Assuming there were no other factors affecting
the gravitational force, then the only other thing needed to make
quantitative predictions of gravitational forces would be a propor-
tionality constant. Newton called that proportionality constant G,
so here is the complete form of the law of gravity he hypothesized.
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h / Students often have a
hard time understanding the
physical meaning of G. It’s just
a proportionality constant that
tells you how strong gravitational
forces are. If you could change it,
all the gravitational forces all over
the universe would get stronger
or weaker. Numerically, the
gravitational attraction between
two 1-kg masses separated by a
distance of 1 m is 6.67×10−11 N,
and this is what G is in SI units.

i / Example 3. Computer-
enhanced images of Pluto and
Charon, taken by the Hubble
Space Telescope.

Newton’s law of gravity

F =
Gm1m2

r2
[gravitational force between objects of mass

m1 and m2, separated by a distance r; r is not

the radius of anything ]

Newton conceived of gravity as an attraction between any two
masses in the universe. The constant G tells us how many newtons
the attractive force is for two 1-kg masses separated by a distance
of 1 m. The experimental determination of G in ordinary units
(as opposed to the special, nonmetric, units used in astronomy)
is described in section 10.5. This difficult measurement was not
accomplished until long after Newton’s death.

The units of G example 1
. What are the units of G?

. Solving for G in Newton’s law of gravity gives

G =
Fr2

m1m2
,

so the units of G must be N·m2/kg2. Fully adorned with units, the
value of G is 6.67× 10−11 N·m2/kg2.

Newton’s third law example 2
. Is Newton’s law of gravity consistent with Newton’s third law?

. The third law requires two things. First, m1’s force on m2 should
be the same as m2’s force on m1. This works out, because the
product m1m2 gives the same result if we interchange the labels 1
and 2. Second, the forces should be in opposite directions. This
condition is also satisfied, because Newton’s law of gravity refers
to an attraction: each mass pulls the other toward itself.

Pluto and Charon example 3
. Pluto’s moon Charon is unusually large considering Pluto’s size,
giving them the character of a double planet. Their masses are
1.25×1022 and 1.9x1021 kg, and their average distance from one
another is 1.96× 104 km. What is the gravitational force between
them?

. If we want to use the value of G expressed in SI (meter-kilogram-
second) units, we first have to convert the distance to 1.96 ×
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j / The conic sections are the
curves made by cutting the
surface of an infinite cone with a
plane.

k / An imaginary cannon able
to shoot cannonballs at very high
speeds is placed on top of an
imaginary, very tall mountain
that reaches up above the at-
mosphere. Depending on the
speed at which the ball is fired,
it may end up in a tightly curved
elliptical orbit, 1, a circular orbit,
2, a bigger elliptical orbit, 3, or a
nearly straight hyperbolic orbit, 4.

107 m. The force is(
6.67× 10−11 N·m2/kg2

) (
1.25× 1022 kg

) (
1.9× 1021 kg

)
(
1.96× 107 m

)2

= 4.1× 1018 N

The proportionality to 1/r2 in Newton’s law of gravity was not
entirely unexpected. Proportionalities to 1/r2 are found in many
other phenomena in which some effect spreads out from a point.
For instance, the intensity of the light from a candle is proportional
to 1/r2, because at a distance r from the candle, the light has to
be spread out over the surface of an imaginary sphere of area 4πr2.
The same is true for the intensity of sound from a firecracker, or the
intensity of gamma radiation emitted by the Chernobyl reactor. It’s
important, however, to realize that this is only an analogy. Force
does not travel through space as sound or light does, and force is
not a substance that can be spread thicker or thinner like butter on
toast.

Although several of Newton’s contemporaries had speculated
that the force of gravity might be proportional to 1/r2, none of
them, even the ones who had learned Newton’s laws of motion, had
had any luck proving that the resulting orbits would be ellipses, as
Kepler had found empirically. Newton did succeed in proving that
elliptical orbits would result from a 1/r2 force, but we postpone
the proof until the chapter 15 because it can be accomplished much
more easily using the concepts of energy and angular momentum.

Newton also predicted that orbits in the shape of hyperbolas
should be possible, and he was right. Some comets, for instance,
orbit the sun in very elongated ellipses, but others pass through
the solar system on hyperbolic paths, never to return. Just as the
trajectory of a faster baseball pitch is flatter than that of a more
slowly thrown ball, so the curvature of a planet’s orbit depends on
its speed. A spacecraft can be launched at relatively low speed,
resulting in a circular orbit about the earth, or it can be launched
at a higher speed, giving a more gently curved ellipse that reaches
farther from the earth, or it can be launched at a very high speed
which puts it in an even less curved hyperbolic orbit. As you go
very far out on a hyperbola, it approaches a straight line, i.e., its
curvature eventually becomes nearly zero.

Newton also was able to prove that Kepler’s second law (sweep-
ing out equal areas in equal time intervals) was a logical consequence
of his law of gravity. Newton’s version of the proof is moderately
complicated, but the proof becomes trivial once you understand the
concept of angular momentum, which will be covered later in the
course. The proof will therefore be deferred until section section
15.9.
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self-check C
Which of Kepler’s laws would it make sense to apply to hyperbolic or-
bits? . Answer, p.
526

. Solved problem: Visiting Ceres page 272, problem 1

. Solved problem: Why a equals g page 276, problem 20

. Solved problem: Ida and Dactyl page 276, problem 21

. Solved problem: Another solar system page 273, problem 6

. Solved problem: Weight loss page 272, problem 3

. Solved problem: The receding moon page 276, problem 22

Discussion questions

A How could Newton find the speed of the moon to plug in to a =
v2/r?

B Two projectiles of different mass shot out of guns on the surface of
the earth at the same speed and angle will follow the same trajectories,
assuming that air friction is negligible. (You can verify this by throwing two
objects together from your hand and seeing if they separate or stay side
by side.) What corresponding fact would be true for satellites of the earth
having different masses?

C What is wrong with the following statement? “A comet in an elliptical
orbit speeds up as it approaches the sun, because the sun’s force on it is
increasing.”

D Why would it not make sense to expect the earth’s gravitational force
on a bowling ball to be inversely proportional to the square of the distance
between their surfaces rather than their centers?

E Does the earth accelerate as a result of the moon’s gravitational
force on it? Suppose two planets were bound to each other gravitationally
the way the earth and moon are, but the two planets had equal masses.
What would their motion be like?

F Spacecraft normally operate by firing their engines only for a few
minutes at a time, and an interplanetary probe will spend months or years
on its way to its destination without thrust. Suppose a spacecraft is in a
circular orbit around Mars, and it then briefly fires its engines in reverse,
causing a sudden decrease in speed. What will this do to its orbit? What
about a forward thrust?
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10.3 Apparent weightlessness
If you ask somebody at the bus stop why astronauts are weightless,
you’ll probably get one of the following two incorrect answers:

(1) They’re weightless because they’re so far from the earth.

(2) They’re weightless because they’re moving so fast.

The first answer is wrong, because the vast majority of astro-
nauts never get more than a thousand miles from the earth’s surface.
The reduction in gravity caused by their altitude is significant, but
not 100%. The second answer is wrong because Newton’s law of
gravity only depends on distance, not speed.

The correct answer is that astronauts in orbit around the earth
are not really weightless at all. Their weightlessness is only appar-
ent. If there was no gravitational force on the spaceship, it would
obey Newton’s first law and move off on a straight line, rather than
orbiting the earth. Likewise, the astronauts inside the spaceship are
in orbit just like the spaceship itself, with the earth’s gravitational
force continually twisting their velocity vectors around. The reason
they appear to be weightless is that they are in the same orbit as
the spaceship, so although the earth’s gravity curves their trajectory
down toward the deck, the deck drops out from under them at the
same rate.

Apparent weightlessness can also be experienced on earth. Any
time you jump up in the air, you experience the same kind of ap-
parent weightlessness that the astronauts do. While in the air, you
can lift your arms more easily than normal, because gravity does not
make them fall any faster than the rest of your body, which is falling
out from under them. The Russian air force now takes rich foreign
tourists up in a big cargo plane and gives them the feeling of weight-
lessness for a short period of time while the plane is nose-down and
dropping like a rock.

10.4 Vector addition of gravitational forces
Pick a flower on earth and you move the farthest star.

Paul Dirac

When you stand on the ground, which part of the earth is pulling
down on you with its gravitational force? Most people are tempted
to say that the effect only comes from the part directly under you,
since gravity always pulls straight down. Here are three observations
that might help to change your mind:

• If you jump up in the air, gravity does not stop affecting you
just because you are not touching the earth: gravity is a non-
contact force. That means you are not immune from the grav-
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l / Gravity only appears to
pull straight down because the
near perfect symmetry of the
earth makes the sideways com-
ponents of the total force on an
object cancel almost exactly. If
the symmetry is broken, e.g., by
a dense mineral deposit, the total
force is a little off to the side.

ity of distant parts of our planet just because you are not
touching them.

• Gravitational effects are not blocked by intervening matter.
For instance, in an eclipse of the moon, the earth is lined up
directly between the sun and the moon, but only the sun’s light
is blocked from reaching the moon, not its gravitational force
— if the sun’s gravitational force on the moon was blocked in
this situation, astronomers would be able to tell because the
moon’s acceleration would change suddenly. A more subtle
but more easily observable example is that the tides are caused
by the moon’s gravity, and tidal effects can occur on the side
of the earth facing away from the moon. Thus, far-off parts
of the earth are not prevented from attracting you with their
gravity just because there is other stuff between you and them.

• Prospectors sometimes search for underground deposits of dense
minerals by measuring the direction of the local gravitational
forces, i.e., the direction things fall or the direction a plumb
bob hangs. For instance, the gravitational forces in the region
to the west of such a deposit would point along a line slightly
to the east of the earth’s center. Just because the total grav-
itational force on you points down, that doesn’t mean that
only the parts of the earth directly below you are attracting
you. It’s just that the sideways components of all the force
vectors acting on you come very close to canceling out.

A cubic centimeter of lava in the earth’s mantle, a grain of silica
inside Mt. Kilimanjaro, and a flea on a cat in Paris are all attracting
you with their gravity. What you feel is the vector sum of all the
gravitational forces exerted by all the atoms of our planet, and for
that matter by all the atoms in the universe.

When Newton tested his theory of gravity by comparing the
orbital acceleration of the moon to the acceleration of a falling apple
on earth, he assumed he could compute the earth’s force on the
apple using the distance from the apple to the earth’s center. Was
he wrong? After all, it isn’t just the earth’s center attracting the
apple, it’s the whole earth. A kilogram of dirt a few feet under his
backyard in England would have a much greater force on the apple
than a kilogram of molten rock deep under Australia, thousands of
miles away. There’s really no obvious reason why the force should
come out right if you just pretend that the earth’s whole mass is
concentrated at its center. Also, we know that the earth has some
parts that are more dense, and some parts that are less dense. The
solid crust, on which we live, is considerably less dense than the
molten rock on which it floats. By all rights, the computation of the
vector sum of all the forces exerted by all the earth’s parts should
be a horrendous mess.
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m / An object outside a spherical
shell of mass will feel gravitational
forces from every part of the shell
— stronger forces from the closer
parts, and weaker ones from the
parts farther away. The shell
theorem states that the vector
sum of all the forces is the same
as if all the mass had been
concentrated at the center of the
shell.

Actually, Newton had sound mathematical reasons for treating
the earth’s mass as if it was concentrated at its center. First, al-
though Newton no doubt suspected the earth’s density was nonuni-
form, he knew that the direction of its total gravitational force was
very nearly toward the earth’s center. That was strong evidence
that the distribution of mass was very symmetric, so that we can
think of the earth as being made of many layers, like an onion,
with each layer having constant density throughout. (Today there
is further evidence for symmetry based on measurements of how the
vibrations from earthquakes and nuclear explosions travel through
the earth.) Newton then concentrated on the gravitational forces
exerted by a single such thin shell, and proved the following math-
ematical theorem, known as the shell theorem:

If an object lies outside a thin, spherical shell of mass, then
the vector sum of all the gravitational forces exerted by all the
parts of the shell is the same as if the shell’s mass had been
concentrated at its center. If the object lies inside the shell,
then all the gravitational forces cancel out exactly.

For terrestrial gravity, each shell acts as though its mass was con-
centrated at the earth’s center, so the final result is the same as if
the earth’s whole mass was concentrated at its center. The shell
theorem is proved on p. 268.

The second part of the shell theorem, about the gravitational
forces canceling inside the shell, is a little surprising. Obviously the
forces would all cancel out if you were at the exact center of a shell,
but why should they still cancel out perfectly if you are inside the
shell but off-center? The whole idea might seem academic, since we
don’t know of any hollow planets in our solar system that astronauts
could hope to visit, but actually it’s a useful result for understanding
gravity within the earth, which is an important issue in geology. It
doesn’t matter that the earth is not actually hollow. In a mine shaft
at a depth of, say, 2 km, we can use the shell theorem to tell us that
the outermost 2 km of the earth has no net gravitational effect, and
the gravitational force is the same as what would be produced if the
remaining, deeper, parts of the earth were all concentrated at its
center.
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self-check D
Suppose you’re at the bottom of a deep mineshaft, which means you’re
still quite far from the center of the earth. The shell theorem says that
the shell of mass you’ve gone inside exerts zero total force on you.
Discuss which parts of the shell are attracting you in which directions,
and how strong these forces are. Explain why it’s at least plausible that
they cancel. . Answer, p. 526

Discussion questions

A If you hold an apple, does the apple exert a gravitational force on
the earth? Is it much weaker than the earth’s gravitational force on the
apple? Why doesn’t the earth seem to accelerate upward when you drop
the apple?

B When astronauts travel from the earth to the moon, how does the
gravitational force on them change as they progress?

C How would the gravity in the first-floor lobby of a massive skyscraper
compare with the gravity in an open field outside of the city?

D In a few billion years, the sun will start undergoing changes that will
eventually result in its puffing up into a red giant star. (Near the beginning
of this process, the earth’s oceans will boil off, and by the end, the sun
will probably swallow the earth completely.) As the sun’s surface starts to
get closer and close to the earth, how will the earth’s orbit be affected?

10.5 Weighing the earth
Let’s look more closely at the application of Newton’s law of gravity
to objects on the earth’s surface. Since the earth’s gravitational
force is the same as if its mass was all concentrated at its center,
the force on a falling object of mass m is given by

F = GMearth m / r2
earth .

The object’s acceleration equals F/m, so the object’s mass cancels
out and we get the same acceleration for all falling objects, as we
knew we should:

g = GMearth / r
2
earth .

Newton knew neither the mass of the earth nor a numerical value
for the constant G. But if someone could measure G, then it would
be possible for the first time in history to determine the mass of the
earth! The only way to measure G is to measure the gravitational
force between two objects of known mass, but that’s an exceedingly
difficult task, because the force between any two objects of ordinary
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o / A simplified version of
Cavendish’s apparatus.

n / Cavendish’s apparatus. The two large balls are fixed in place,
but the rod from which the two small balls hang is free to twist under the
influence of the gravitational forces.

size is extremely small. The English physicist Henry Cavendish was
the first to succeed, using the apparatus shown in figures n and o.
The two larger balls were lead spheres 8 inches in diameter, and each
one attracted the small ball near it. The two small balls hung from
the ends of a horizontal rod, which itself hung by a thin thread. The
frame from which the larger balls hung could be rotated by hand
about a vertical axis, so that for instance the large ball on the right
would pull its neighboring small ball toward us and while the small
ball on the left would be pulled away from us. The thread from
which the small balls hung would thus be twisted through a small
angle, and by calibrating the twist of the thread with known forces,
the actual gravitational force could be determined. Cavendish set
up the whole apparatus in a room of his house, nailing all the doors
shut to keep air currents from disturbing the delicate apparatus.
The results had to be observed through telescopes stuck through
holes drilled in the walls. Cavendish’s experiment provided the first
numerical values for G and for the mass of the earth. The presently
accepted value of G is 6.67× 10−11 N·m2/kg2.

Knowing G not only allowed the determination of the earth’s
mass but also those of the sun and the other planets. For instance,
by observing the acceleration of one of Jupiter’s moons, we can infer
the mass of Jupiter. The following table gives the distances of the
planets from the sun and the masses of the sun and planets. (Other
data are given in the back of the book.)
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average distance from
the sun, in units of the
earth’s average distance
from the sun

mass, in units of the
earth’s mass

sun — 330,000

mercury 0.38 0.056

venus 0.72 0.82

earth 1 1

mars 1.5 0.11

jupiter 5.2 320

saturn 9.5 95

uranus 19 14

neptune 30 17

pluto 39 0.002

The following example applies the numerical techniques of sec-
tion 4.6.

From the earth to the moon example 4
The Apollo 11 mission landed the first humans on the moon in
1969. In this example, we’ll estimate the time it took to get to
the moon, and compare our estimate with the actual time, which
was 73.0708 hours from the engine burn that took the ship out of
earth orbit to the engine burn that inserted it into lunar orbit. Dur-
ing this time, the ship was coasting with the engines off, except
for a small course-correction burn, which we neglect. More im-
portantly, we do the calculation for a straight-line trajectory rather
than the real S-shaped one, so the result can only be expected
to agree roughly with what really happened. The following data
come from the original press kit, which NASA has scanned and
posted on the Web:

initial altitude 3.363× 105 m
initial velocity 1.083× 104 m/s

The endpoint of the the straight-line trajectory is a free-fall im-
pact on the lunar surface, which is also unrealistic (luckily for the
astronauts).

The force acting on the ship is

F = −GMem
r2 +

GMmm
(rm − r )2 ,

but since everything is proportional to the mass of the ship, m, we
can divide it out

F
m

= −GMe

r2 +
GMm

(rm − r )2 ,

and the variables F in the program is actually the force per unit
mass F/m. The program is a straightforward modification of the
function meteor on page 139.

Section 10.5 Weighing the earth 265



1 import math

2 def apollo(vi,n):

3 bigg=6.67e-11 # gravitational constant, SI

4 me=5.97e24 # mass of earth, kg

5 mm=7.35e22 # mass of moon, kg

6 em=3.84e8 # earth-moon distance, m

7 re=6.378e6 # radius of earth, m

8 rm=1.74e6 # radius of moon, m

9 v=vi

10 x=re+3.363e5 # re+initial altitude

11 xf=em-rm # surface of moon

12 dt = 360000./n # split 100 hours into n parts

13 t = 0.

14 for i in range(n):

15 dx = v*dt

16 x = x+dx # Change x.

17 if x>xf:

18 return t/3600.

19 a = -bigg*me/x**2+bigg*mm/(em-x)**2

20 t = t + dt

21 dv = a*dt

22 v = v+dv

>>> print apollo(1.083e4,1000000)

59.7488999991

>>> vi=1.083e4

This is pretty decent agreement with the real-world time of 73
hours, considering the wildly inaccurate trajectory assumed. It’s
interesting to see how much the duration of the trip changes if we
increase the initial velocity by only ten percent:

>>> print apollo(1.2e4,1000000)

18.3682

The most important reason for using the lower speed was that
if something had gone wrong, the ship would have been able to
whip around the moon and take a “free return” trajectory back to
the earth, without having to do any further burns. At a higher
speed, the ship would have had so much kinetic energy that in
the absence of any further engine burns, it would have escaped
from the earth-moon system. The Apollo 13 mission had to take a
free return trajectory after an explosion crippled the spacecraft.

Discussion questions

A It would have been difficult for Cavendish to start designing an
experiment without at least some idea of the order of magnitude of G.
How could he estimate it in advance to within a factor of 10?
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B Fill in the details of how one would determine Jupiter’s mass by
observing the acceleration of one of its moons. Why is it only necessary
to know the acceleration of the moon, not the actual force acting on it?
Why don’t we need to know the mass of the moon? What about a planet
that has no moons, such as Venus — how could its mass be found?

10.6 ? Dark energy
Until recently, physicists thought they understood gravity fairly
well. Einstein had modified Newton’s theory, but certain charac-
teristrics of gravitational forces were firmly established. For one
thing, they were always attractive. If gravity always attracts, then
it is logical to ask why the universe doesn’t collapse. Newton had
answered this question by saying that if the universe was infinite in
all directions, then it would have no geometric center toward which
it would collapse; the forces on any particular star or planet ex-
erted by distant parts of the universe would tend to cancel out by
symmetry. More careful calculations, however, show that Newton’s
universe would have a tendency to collapse on smaller scales: any
part of the universe that happened to be slightly more dense than
average would contract further, and this contraction would result
in stronger gravitational forces, which would cause even more rapid
contraction, and so on.

When Einstein overhauled gravity, the same problem reared its
ugly head. Like Newton, Einstein was predisposed to believe in a
universe that was static, so he added a special repulsive term to his
equations, intended to prevent a collapse. This term was not associ-
ated with any interaction of mass with mass, but represented merely
an overall tendency for space itself to expand unless restrained by
the matter that inhabited it. It turns out that Einstein’s solution,
like Newton’s, is unstable. Furthermore, it was soon discovered
observationally that the universe was expanding, and this was in-
terpreted by creating the Big Bang model, in which the universe’s
current expansion is the aftermath of a fantastically hot explosion.

An expanding universe, unlike a static one, was capable of being
explained with Einstein’s equations, without any repulsion term.
The universe’s expansion would simply slow down over time due
to the attractive gravitational forces. After these developments,
Einstein said woefully that adding the repulsive term, known as the
cosmological constant, had been the greatest blunder of his life.

This was the state of things until 1999, when evidence began to
turn up that the universe’s expansion has been speeding up rather
than slowing down! The first evidence came from using a telescope
as a sort of time machine: light from a distant galaxy may have
taken billions of years to reach us, so we are seeing it as it was far
in the past. Looking back in time, astronomers saw the universe
expanding at speeds that were lower, rather than higher. At first
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q / A spherical shell of mass
M interacts with a pointlike mass
m.

p / The WMAP probe’s map of the
cosmic microwave background is
like a “baby picture” of the uni-
verse.

they were mortified, since this was exactly the opposite of what
had been expected. The statistical quality of the data was also not
good enough to constitute ironclad proof, and there were worries
about systematic errors. The case for an accelerating expansion has
however been supported by high-precision mapping of the dim, sky-
wide afterglow of the Big Bang, known as the cosmic microwave
background.

So now Einstein’s “greatest blunder” has been resurrected. Since
we don’t actually know whether or not this self-repulsion of space
has a constant strength, the term “cosmological constant” has lost
currency. Nowadays physicists usually refer to the phenomenon as
“dark energy.” Picking an impressive-sounding name for it should
not obscure the fact that we know absolutely nothing about the
nature of the effect or why it exists.

10.7 ? Proof of the shell theorem

Referring to figure q, let b be the radius of the shell, h its thick-
ness, and ρ its density. Its volume is then V=(area)(thickness)=4πb2h,
and its mass is M = ρV = 4πρb2h. The strategy is to divide the
shell up into rings as shown, with each ring extending from θ to
θ + dθ. Since the ring is infinitesimally skinny, its entire mass
lies at the same distance, r, from mass m. The width of such
a ring is found by the definition of radian measure to be w =
bdθ, and its mass is dM = (ρ)(circumference)(thickness)(width)=
(ρ)(2πb sin θ)(h)(bdθ)=2πρb2h sin θdθ. To save writing, we define
A = GMm/s2. For the case where m is outside the shell, our goal
is to prove that the force F acting on m equals A. Let the axis of
symmetry be x, and let the contribution of this ring to the total
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force be dFx.

F =

∫
dFx

=

∫
GmdM

r2
cosα

=

∫
Gm · 2πρb2h sin θdθ

r2
cosα

=

(
s2

2

)
A

∫
sin θdθ

r2
cosα

From the law of cosines we find

r2 = b2 + s2 − 2bs cos θ ,

b2 = r2 + s2 − 2rs cosα ,

and differentiation of the former gives

2rdr = 2bs sin θdθ .

We can now write the integrand entirely in terms of the single vari-
able of integration r.

F =
( s

2b

)
A

∫ s+b

s−b

rdr

r2
cosα

=

(
1

4b

)
A

∫ s+b

s−b

dr

r

(
r +

s2 − b2

r

)
=

(
1

4b

)
A(2b+ 2b)

= A

This is what we wanted to prove for the case where m is on the
outside. The inside case is problem 27. A more elegant method of
proof is to use Gauss’s theorem, which is usually introduced in a
class on electricity and magnetism or vector calculus; the concept
is that the gravitational field can be visualized in terms of lines
of gravitational force spreading out from a mass, and the number
of lines coming out through a surface is independent of the exact
geometry of the surface and the mass distribution. It is interesting
to note that the result depends on both the fact that the exponent
of r in Newton’s law of gravity is −2 (problem 28) and on the fact
that space has three dimensions.
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Summary
Selected vocabulary
ellipse . . . . . . . a flattened circle; one of the conic sections
conic section . . . a curve formed by the intersection of a plane

and an infinite cone
hyperbola . . . . another conic section; it does not close back

on itself
period . . . . . . . the time required for a planet to complete one

orbit; more generally, the time for one repeti-
tion of some repeating motion

focus . . . . . . . one of two special points inside an ellipse: the
ellipse consists of all points such that the sum
of the distances to the two foci equals a certain
number; a hyperbola also has a focus

Notation
G . . . . . . . . . the constant of proportionality in Newton’s

law of gravity; the gravitational force of at-
traction between two 1-kg spheres at a center-
to-center distance of 1 m

Summary

Kepler deduced three empirical laws from data on the motion of
the planets:

Kepler’s elliptical orbit law: The planets orbit the sun in ellip-
tical orbits with the sun at one focus.

Kepler’s equal-area law: The line connecting a planet to the sun
sweeps out equal areas in equal amounts of time.

Kepler’s law of periods: The time required for a planet to orbit
the sun is proportional to the long axis of the ellipse raised to
the 3/2 power. The constant of proportionality is the same
for all the planets.

Newton was able to find a more fundamental explanation for these
laws. Newton’s law of gravity states that the magnitude of the
attractive force between any two objects in the universe is given by

F = Gm1m2/r
2 .

Weightlessness of objects in orbit around the earth is only appar-
ent. An astronaut inside a spaceship is simply falling along with
the spaceship. Since the spaceship is falling out from under the as-
tronaut, it appears as though there was no gravity accelerating the
astronaut down toward the deck.

Gravitational forces, like all other forces, add like vectors. A
gravitational force such as we ordinarily feel is the vector sum of all
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the forces exerted by all the parts of the earth. As a consequence of
this, Newton proved the shell theorem for gravitational forces:

If an object lies outside a thin, uniform shell of mass, then the
vector sum of all the gravitational forces exerted by all the parts of
the shell is the same as if all the shell’s mass was concentrated at its
center. If the object lies inside the shell, then all the gravitational
forces cancel out exactly.
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Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Ceres, the largest asteroid in our solar system, is a spherical
body with a mass 6000 times less than the earth’s, and a radius
which is 13 times smaller. If an astronaut who weighs 400 N on
earth is visiting the surface of Ceres, what is her weight?

. Solution, p. 518

2 Roy has a mass of 60 kg. Laurie has a mass of 65 kg. They
are 1.5 m apart.
(a) What is the magnitude of the gravitational force of the earth on
Roy?
(b) What is the magnitude of Roy’s gravitational force on the earth?
(c) What is the magnitude of the gravitational force between Roy
and Laurie?
(d) What is the magnitude of the gravitational force between Laurie
and the sun?

√

3 (a) A certain vile alien gangster lives on the surface of an
asteroid, where his weight is 0.20 N. He decides he needs to lose
weight without reducing his consumption of princesses, so he’s going
to move to a different asteroid where his weight will be 0.10 N. The
real estate agent’s database has asteroids listed by mass, however,
not by surface gravity. Assuming that all asteroids are spherical
and have the same density, how should the mass of his new asteroid
compare with that of his old one?
(b) Jupiter’s mass is 318 times the Earth’s, and its gravity is about
twice Earth’s. Is this consistent with the results of part a? If not,
how do you explain the discrepancy? . Solution, p. 518

4 The planet Uranus has a mass of 8.68× 1025 kg and a radius
of 2.56× 104 km. The figure shows the relative sizes of Uranus and
Earth.
(a) Compute the ratio gU/gE , where gU is the strength of the grav-
itational field at the surface of Uranus and gE is the corresponding
quantity at the surface of the Earth.

√

(b) What is surprising about this result? How do you explain it?

5 How high above the Earth’s surface must a rocket be in order
to have 1/100 the weight it would have at the surface? Express your
answer in units of the radius of the Earth.

√
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Problem 8.

6 Astronomers have detected a solar system consisting of three
planets orbiting the star Upsilon Andromedae. The planets have
been named b, c, and d. Planet b’s average distance from the star
is 0.059 A.U., and planet c’s average distance is 0.83 A.U., where an
astronomical unit or A.U. is defined as the distance from the Earth
to the sun. For technical reasons, it is possible to determine the
ratios of the planets’ masses, but their masses cannot presently be
determined in absolute units. Planet c’s mass is 3.0 times that of
planet b. Compare the star’s average gravitational force on planet
c with its average force on planet b. [Based on a problem by Arnold
Arons.] . Solution, p. 518

7 The star Lalande 21185 was found in 1996 to have two planets
in roughly circular orbits, with periods of 6 and 30 years. What is
the ratio of the two planets’ orbital radii?

√

8 You are considering going on a space voyage to Mars, in which
your route would be half an ellipse, tangent to the Earth’s orbit at
one end and tangent to Mars’ orbit at the other. Your spacecraft’s
engines will only be used at the beginning and end, not during the
voyage. How long would the outward leg of your trip last? (Assume
the orbits of Earth and Mars are circular.)

√

9 Where would an object have to be located so that it would
experience zero total gravitational force from the earth and moon?√

10 In a Star Trek episode, the Enterprise is in a circular orbit
around a planet when something happens to the engines. Spock
then tells Kirk that the ship will spiral into the planet’s surface
unless they can fix the engines. Is this scientifically correct? Why?

11 Astronomers have recently observed stars orbiting at very
high speeds around an unknown object near the center of our galaxy.
For stars orbiting at distances of about 1014 m from the object,
the orbital velocities are about 106 m/s. Assuming the orbits are
circular, estimate the mass of the object, in units of the mass of
the sun, 2 × 1030 kg. If the object was a tightly packed cluster of
normal stars, it should be a very bright source of light. Since no
visible light is detected coming from it, it is instead believed to be
a supermassive black hole.

√

12 During a solar eclipse, the moon, earth and sun all lie on
the same line, with the moon between the earth and sun. Define
your coordinates so that the earth and moon lie at greater x values
than the sun. For each force, give the correct sign as well as the
magnitude. (a) What force is exerted on the moon by the sun? (b)
On the moon by the earth? (c) On the earth by the sun? (d) What
total force is exerted on the sun? (e) On the moon? (f) On the
earth?

√
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13 Suppose that on a certain day there is a crescent moon,
and you can tell by the shape of the crescent that the earth, sun
and moon form a triangle with a 135◦ interior angle at the moon’s
corner. What is the magnitude of the total gravitational force of
the earth and the sun on the moon? (If you haven’t done problem
12 already, you might want to try it first, since it’s easier, and some
of its results can be recycled in this problem.)

√

Problem 13.

14 On Feb. 28, 2007, the New Horizons space probe, on its way
to a 2015 flyby of Pluto, passed by the planet Jupiter for a gravity-
assisted maneuver that increased its speed and changed its course.
The dashed line in the figure shows the spacecraft’s trajectory, which
is curved because of three forces: the force of the exhaust gases from
the probe’s own engines, the sun’s gravitational force, and Jupiter’s
gravitational force. Find the magnitude of the total gravitational
force acting on the probe. You will find that the sun’s force is much
smaller than Jupiter’s, so that the magnitude of the total force is
determined almost entirely by Jupiter’s force. However, this is a
high-precision problem, and you will find that the total force is
slightly different from Jupiter’s force.

√

Problem 14: New Horizons at
its closest approach to Jupiter.
(Jupiter’s four largest moons are
shown for illustrative purposes.)
The masses are:
sun: 1.9891× 1030 kg
Jupiter: 1.8986× 1027 kg
New Horizons: 465.0 kg

15 The International Space Station orbits at an average altitude
of about 370 km above sea level. Compute the value of g at that
altitude.

√
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16 (a) If the earth was of uniform density, would your weight
be increased or decreased at the bottom of a mine shaft? Explain.
(b) In real life, objects weigh slightly more at the bottom of a mine
shaft. What does that allow us to infer about the Earth? ?

17 (a) A geosynchronous orbit is one in which the satellite orbits
above the equator, and has an orbital period of 24 hours, so that it
is always above the same point on the spinning earth. Calculate the
altitude of such a satellite.

√

(b) What is the gravitational field experienced by the satellite? Give
your answer as a percentage in relation to the gravitational field at
the earth’s surface.

√

18 If a bullet is shot straight up at a high enough velocity, it will
never return to the earth. This is known as the escape velocity. We
will discuss escape velocity using the concept of energy later in the
course, but it can also be gotten at using straightforward calculus.
In this problem, you will analyze the motion of an object of mass m
whose initial velocity is exactly equal to escape velocity. We assume
that it is starting from the surface of a spherically symmetric planet
of mass M and radius b. The trick is to guess at the general form
of the solution, and then determine the solution in more detail. As-
sume (as is true) that the solution is of the form r = ktp, where r is
the object’s distance from the center of the planet at time t, and k
and p are constants.
(a) Find the acceleration, and use Newton’s second law and New-
ton’s law of gravity to determine k and p. You should find that the
result is independent of m.

√

(b) What happens to the velocity as t approaches infinity?
(c) Determine escape velocity from the Earth’s surface.

√

19 (a) Suppose a rotating spherical body such as a planet has
a radius r and a uniform density ρ, and the time required for one
rotation is T . At the surface of the planet, the apparent acceleration
of a falling object is reduced by the acceleration of the ground out
from under it. Derive an equation for the apparent acceleration of
gravity, g, at the equator in terms of r, ρ, T , and G.

√

(b) Applying your equation from a, by what fraction is your appar-
ent weight reduced at the equator compared to the poles, due to the
Earth’s rotation?

√

(c) Using your equation from a, derive an equation giving the value
of T for which the apparent acceleration of gravity becomes zero,
i.e., objects can spontaneously drift off the surface of the planet.
Show that T only depends on ρ, and not on r.

√

(d) Applying your equation from c, how long would a day have to
be in order to reduce the apparent weight of objects at the equator
of the Earth to zero? [Answer: 1.4 hours]
(e) Astronomers have discovered objects they called pulsars, which
emit bursts of radiation at regular intervals of less than a second.
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Problem 21.

If a pulsar is to be interpreted as a rotating sphere beaming out a
natural “searchlight” that sweeps past the earth with each rotation,
use your equation from c to show that its density would have to be
much greater than that of ordinary matter.
(f) Astrophysicists predicted decades ago that certain stars that used
up their sources of energy could collapse, forming a ball of neutrons
with the fantastic density of ∼ 1017 kg/m3. If this is what pulsars
really are, use your equation from c to explain why no pulsar has
ever been observed that flashes with a period of less than 1 ms or
so.

20 Prove, based on Newton’s laws of motion and Newton’s law
of gravity, that all falling objects have the same acceleration if they
are dropped at the same location on the earth and if other forces
such as friction are unimportant. Do not just say, “g = 9.8 m/s2 –
it’s constant.” You are supposed to be proving that g should be the
same number for all objects. . Solution, p. 518

21 The figure shows an image from the Galileo space probe
taken during its August 1993 flyby of the asteroid Ida. Astronomers
were surprised when Galileo detected a smaller object orbiting Ida.
This smaller object, the only known satellite of an asteroid in our
solar system, was christened Dactyl, after the mythical creatures
who lived on Mount Ida, and who protected the infant Zeus. For
scale, Ida is about the size and shape of Orange County, and Dactyl
the size of a college campus. Galileo was unfortunately unable to
measure the time, T , required for Dactyl to orbit Ida. If it had,
astronomers would have been able to make the first accurate deter-
mination of the mass and density of an asteroid. Find an equation
for the density, ρ, of Ida in terms of Ida’s known volume, V , the
known radius, r, of Dactyl’s orbit, and the lamentably unknown
variable T . (This is the same technique that was used successfully
for determining the masses and densities of the planets that have
moons.) . Solution, p. 519

22 As is discussed in more detail in example 3 on p. 400, tidal
interactions with the earth are causing the moon’s orbit to grow
gradually larger. Laser beams bounced off of a mirror left on the
moon by astronauts have allowed a measurement of the moon’s rate
of recession, which is about 1 cm per year. This means that the
gravitational force acting between earth and moon is decreasing.
By what fraction does the force decrease with each 27-day orbit?
[Based on a problem by Arnold Arons.]

. Hint, p. 508 . Solution, p. 519
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23 Astronomers calculating orbits of planets often work in a
nonmetric system of units, in which the unit of time is the year,
the unit of mass is the sun’s mass, and the unit of distance is the
astronomical unit (A.U.), defined as half the long axis of the earth’s
orbit. In these units, find an exact expression for the gravitational
constant, G.

√

24 Suppose that we inhabited a universe in which, instead of
Newton’s law of gravity, we had F = k

√
m1m2/r

2, where k is some
constant with different units than G. (The force is still attrac-
tive.) However, we assume that a = F/m and the rest of Newtonian
physics remains true, and we use a = F/m to define our mass scale,
so that, e.g., a mass of 2 kg is one which exhibits half the accelera-
tion when the same force is applied to it as to a 1 kg mass.
(a) Is this new law of gravity consistent with Newton’s third law?
(b) Suppose you lived in such a universe, and you dropped two un-
equal masses side by side. What would happen?
(c) Numerically, suppose a 1.0-kg object falls with an acceleration
of 10 m/s2. What would be the acceleration of a rain drop with a
mass of 0.1 g? Would you want to go out in the rain?
(d) If a falling object broke into two unequal pieces while it fell,
what would happen?
(e) Invent a law of gravity that results in behavior that is the op-
posite of what you found in part b. [Based on a problem by Arnold
Arons.]

25 The structures that we see in the universe, such as solar
systems, galaxies, and clusters of galaxies, are believed to have con-
densed from clumps that formed, due to gravitational attraction,
in preexisting clouds of gas and dust. Observations of the cosmic
microwave background radiation (p. 268) suggest that the mixture
of hot hydrogen and helium that existed soon after the Big Bang
was extremely uniform, but not perfectly so. We can imagine that
any region that started out a little more dense would form a natural
center for the collapse of a clump. Suppose that we have a spheri-
cal region with density ρ and radius r, and for simplicity let’s just
assume that it’s surrounded by vacuum. (a) Find the acceleration
of the material at the edge of the cloud. To what power of r is it
proportional?

√

(b) The cloud will take a time t to collapse to some fraction of its
original size. Show that t is independent of r.

Remark: This result suggests that structures would get a chance to form at all
scales in the universe. That is, solar systems would not form before galaxies got
to, or vice versa. It is therefore physically natural that when we look at the
universe at essentially all scales less than a billion light-years, we see structure.

?
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26 You have a fixed amount of material with a fixed density. If
the material is formed into some shape S, then there will be some
point in space at which the resulting gravitational field attains its
maximum value gS . What shape maximizes gS? ?

27 Complete the proof of the shell theorem in section 10.7 by
filling in the case where m is inside the shell.

28 The shell theorem was proved in section 10.7. Prove that the
theorem fails if the exponent of r in Newton’s law of gravity differs
from −2.

29 The shell theorem describes two cases, inside and outside.
Show that for an alternative law of gravity F = GMmr (with r1

rather than r−2), the outside case still holds.

30 On an airless body such as the moon, there is no atmospheric
friction, so it should be possible for a satellite to orbit at a very low
altitude, just high enough to keep from hitting the mountains. (a)
Suppose that such a body is a smooth sphere of uniform density
ρ and radius r. Find the velocity required for a ground-skimming
orbit.

√

(b) A typical asteroid has a density of about 2 g/cm3, i.e., twice that
of water. (This is a lot lower than the density of the earth’s crust,
probably indicating that the low gravity is not enough to compact
the material very tightly, leaving lots of empty space inside.) Sup-
pose that it is possible for an astronaut in a spacesuit to jump at
2 m/s. Find the radius of the largest asteroid on which it would be
possible to jump into a ground-skimming orbit.

√
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31 The figure shows a region of outer space in which two stars
have exploded, leaving behind two overlapping spherical shells of
gas, which we assume to remain at rest. The figure is a cross-
section in a plane containing the shells’ centers. A space probe is
released with a very small initial speed at the point indicated by
the arrow, initially moving in the direction indicated by the dashed
line. Without any further information, predict as much as possible
about the path followed by the probe and its changes in speed along
that path. ?

Problem 31.

32 Approximate the earth’s density as being constant. Find
the gravitational field at a point P inside the earth and half-way
between the center and the surface. Express your result as a ratio
gP /gS relative to the field we experience at the surface.
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33 The earth is divided into solid inner core, a liquid outer core,
and a plastic mantle. Physical properties such as density change
discontinuously at the boundaries between one layer and the next.
Although the density is not completely constant within each region,
we will approximate it as being so for the purposes of this problem.
(We neglect the crust as well.) Let R be the radius of the earth
as a whole and M its mass. The following table gives a model of
some properties of the three layers, as determined by methods such
as the observation of earthquake waves that have propagated from
one side of the planet to the other.

region outer radius/R mass/M
mantle 1 0.69
outer core 0.55 0.29
inner core 0.19 0.017

The boundary between the mantle and the outer core is referred to
as the Gutenberg discontinuity. Let gs be the strength of the earth’s
gravitational field at its surface and gG its value at the Gutenberg
discontinuity. Find gG/gs.

√
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Exercise 10: The shell theorem
This exercise is an approximate numerical test of the shell theorem. There are seven masses
A-G, each being one kilogram. Masses A-E, each one meter from the center, form a shape like
two Egyptian pyramids joined at their bases; this is a rough approximation to a six-kilogram
spherical shell of mass. Mass G is five meters from the center of the main group. The class will
divide into six groups and split up the work required in order to calculate the vector sum of the
six gravitational forces exerted on mass G. Depending on the size of the class, more than one
group may be assigned to deal with the contribution of the same mass to the total force, and
the redundant groups can check each other’s results.

1. Discuss as a class what can be done to simplify the task of calculating the vector sum, and
how to organize things so that each group can work in parallel with the others.

2. Each group should write its results on the board in units of piconewtons, retaining five
significant figures of precision. Everyone will need to use the same value for the gravitational
constant, G = 6.6743× 10−11 N·m2/kg2.

3. The class will determine the vector sum and compare with the result that would be obtained
with the shell theorem.
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In July of 1994, Comet Shoemaker-Levy struck the planet Jupiter, de-
positing 7 × 1022 joules of energy, and incidentally giving rise to a series
of Hollywood movies in which our own planet is threatened by an impact
by a comet or asteroid. There is evidence that such an impact caused
the extinction of the dinosaurs. Left: Jupiter’s gravitational force on the
near side of the comet was greater than on the far side, and this differ-
ence in force tore up the comet into a string of fragments. Two separate
telescope images have been combined to create the illusion of a point of
view just behind the comet. (The colored fringes at the edges of Jupiter
are artifacts of the imaging system.) Top: A series of images of the plume
of superheated gas kicked up by the impact of one of the fragments. The
plume is about the size of North America. Bottom: An image after all the
impacts were over, showing the damage done.

Chapter 11

Conservation of energy

11.1 The search for a perpetual motion
machine

Don’t underestimate greed and laziness as forces for progress. Mod-
ern chemistry was born from the collision of lust for gold with dis-
taste for the hard work of finding it and digging it up. Failed efforts
by generations of alchemists to turn lead into gold led finally to the
conclusion that it could not be done: certain substances, the chem-
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a / The magnet draws the
ball to the top of the ramp, where
it falls through the hole and rolls
back to the bottom.

b / As the wheel spins clock-
wise, the flexible arms sweep
around and bend and unbend. By
dropping off its ball on the ramp,
the arm is supposed to make
itself lighter and easier to lift over
the top. Picking its own ball back
up again on the right, it helps to
pull the right side down.

ical elements, are fundamental, and chemical reactions can neither
increase nor decrease the amount of an element such as gold.

Now flash forward to the early industrial age. Greed and laziness
have created the factory, the train, and the ocean liner, but in each
of these is a boiler room where someone gets sweaty shoveling the
coal to fuel the steam engine. Generations of inventors have tried to
create a machine, called a perpetual motion machine, that would run
forever without fuel. Such a machine is not forbidden by Newton’s
laws of motion, which are built around the concepts of force and
inertia. Force is free, and can be multiplied indefinitely with pulleys,
gears, or levers. The principle of inertia seems even to encourage
the belief that a cleverly constructed machine might not ever run
down.

Figures a and b show two of the innumerable perpetual motion
machines that have been proposed. The reason these two examples
don’t work is not much different from the reason all the others have
failed. Consider machine a. Even if we assume that a properly
shaped ramp would keep the ball rolling smoothly through each
cycle, friction would always be at work. The designer imagined that
the machine would repeat the same motion over and over again, so
that every time it reached a given point its speed would be exactly
the same as the last time. But because of friction, the speed would
actually be reduced a little with each cycle, until finally the ball
would no longer be able to make it over the top.

Friction has a way of creeping into all moving systems. The
rotating earth might seem like a perfect perpetual motion machine,
since it is isolated in the vacuum of outer space with nothing to exert
frictional forces on it. But in fact our planet’s rotation has slowed
drastically since it first formed, and the earth continues to slow
its rotation, making today just a little longer than yesterday. The
very subtle source of friction is the tides. The moon’s gravity raises
bulges in the earth’s oceans, and as the earth rotates the bulges
progress around the planet. Where the bulges encounter land, there
is friction, which slows the earth’s rotation very gradually.

11.2 Energy
The analysis based on friction is somewhat superficial, however. One
could understand friction perfectly well and yet imagine the follow-
ing situation. Astronauts bring back a piece of magnetic ore from
the moon which does not behave like ordinary magnets. A normal
bar magnet, c/1, attracts a piece of iron essentially directly toward
it, and has no left- or right-handedness. The moon rock, however,
exerts forces that form a whirlpool pattern around it, 2. NASA
goes to a machine shop and has the moon rock put in a lathe and
machined down to a smooth cylinder, 3. If we now release a ball
bearing on the surface of the cylinder, the magnetic force whips it
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c / A mysterious moon rock
makes a perpetual motion
machine.

d / Example 1.

around and around at ever higher speeds. Of course there is some
friction, but there is a net gain in speed with each revolution.

Physicists would lay long odds against the discovery of such a
moon rock, not just because it breaks the rules that magnets nor-
mally obey but because, like the alchemists, they have discovered
a very deep and fundamental principle of nature which forbids cer-
tain things from happening. The first alchemist who deserved to
be called a chemist was the one who realized one day, “In all these
attempts to create gold where there was none before, all I’ve been
doing is shuffling the same atoms back and forth among different
test tubes. The only way to increase the amount of gold in my lab-
oratory is to bring some in through the door.” It was like having
some of your money in a checking account and some in a savings ac-
count. Transferring money from one account into the other doesn’t
change the total amount.

We say that the number of grams of gold is a conserved quan-
tity. In this context, the word “conserve” does not have its usual
meaning of trying not to waste something. In physics, a conserved
quantity is something that you wouldn’t be able to get rid of even
if you wanted to. Conservation laws in physics always refer to a
closed system, meaning a region of space with boundaries through
which the quantity in question is not passing. In our example, the
alchemist’s laboratory is a closed system because no gold is coming
in or out through the doors.

Conservation of mass example 1
In figure d, the stream of water is fatter near the mouth of the
faucet, and skinnier lower down. This is because the water speeds
up as it falls. If the cross-sectional area of the stream was equal
all along its length, then the rate of flow through a lower cross-
section would be greater than the rate of flow through a cross-
section higher up. Since the flow is steady, the amount of wa-
ter between the two cross-sections stays constant. The cross-
sectional area of the stream must therefore shrink in inverse pro-
portion to the increasing speed of the falling water. This is an
example of conservation of mass.

In general, the amount of any particular substance is not con-
served. Chemical reactions can change one substance into another,
and nuclear reactions can even change one element into another.
The total mass of all substances is however conserved:

the law of conservation of mass
The total mass of a closed system always remains constant. Energy
cannot be created or destroyed, but only transferred from one system
to another.

A similar lightbulb eventually lit up in the heads of the people
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who had been frustrated trying to build a perpetual motion machine.
In perpetual motion machine a, consider the motion of one of the
balls. It performs a cycle of rising and falling. On the way down it
gains speed, and coming up it slows back down. Having a greater
speed is like having more money in your checking account, and being
high up is like having more in your savings account. The device is
simply shuffling funds back and forth between the two. Having more
balls doesn’t change anything fundamentally. Not only that, but
friction is always draining off money into a third “bank account:”
heat. The reason we rub our hands together when we’re cold is that
kinetic friction heats things up. The continual buildup in the “heat
account” leaves less and less for the “motion account” and “height
account,” causing the machine eventually to run down.

These insights can be distilled into the following basic principle
of physics:

the law of conservation of energy
It is possible to give a numerical rating, called energy, to the state
of a physical system. The total energy is found by adding up contri-
butions from characteristics of the system such as motion of objects
in it, heating of the objects, and the relative positions of objects
that interact via forces. The total energy of a closed system always
remains constant. Energy cannot be created or destroyed, but only
transferred from one system to another.

The moon rock story violates conservation of energy because the
rock-cylinder and the ball together constitute a closed system. Once
the ball has made one revolution around the cylinder, its position
relative to the cylinder is exactly the same as before, so the numer-
ical energy rating associated with its position is the same as before.
Since the total amount of energy must remain constant, it is im-
possible for the ball to have a greater speed after one revolution. If
it had picked up speed, it would have more energy associated with
motion, the same amount of energy associated with position, and a
little more energy associated with heating through friction. There
cannot be a net increase in energy.

Converting one form of energy to another example 2
Dropping a rock: The rock loses energy because of its changing
position with respect to the earth. Nearly all that energy is trans-
formed into energy of motion, except for a small amount lost to
heat created by air friction.

Sliding in to home base: The runner’s energy of motion is nearly
all converted into heat via friction with the ground.

Accelerating a car: The gasoline has energy stored in it, which
is released as heat by burning it inside the engine. Perhaps 10%
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e / Example 3.

of this heat energy is converted into the car’s energy of motion.
The rest remains in the form of heat, which is carried away by the
exhaust.

Cruising in a car: As you cruise at constant speed in your car, all
the energy of the burning gas is being converted into heat. The
tires and engine get hot, and heat is also dissipated into the air
through the radiator and the exhaust.

Stepping on the brakes: All the energy of the car’s motion is con-
verted into heat in the brake shoes.

Stevin’s machine example 3
The Dutch mathematician and engineer Simon Stevin proposed

the imaginary machine shown in figure e, which he had inscribed
on his tombstone. This is an interesting example, because it
shows a link between the force concept used earlier in this course,
and the energy concept being developed now.

The point of the imaginary machine is to show the mechanical
advantage of an inclined plane. In this example, the triangle has
the proportions 3-4-5, but the argument works for any right trian-
gle. We imagine that the chain of balls slides without friction, so
that no energy is ever converted into heat. If we were to slide
the chain clockwise by one step, then each ball would take the
place of the one in front of it, and the over all configuration would
be exactly the same. Since energy is something that only de-
pends on the state of the system, the energy would have to be
the same. Similarly for a counterclockwise rotation, no energy of
position would be released by gravity. This means that if we place
the chain on the triangle, and release it at rest, it can’t start mov-
ing, because there would be no way for it to convert energy of
position into energy of motion. Thus the chain must be perfectly
balanced. Now by symmetry, the arc of the chain hanging under-
neath the triangle has equal tension at both ends, so removing
this arc wouldn’t affect the balance of the rest of the chain. This
means that a weight of three units hanging vertically balances a
weight of five units hanging diagonally along the hypotenuse.

The mechanical advantage of the inclined plane is therefore 5/3,
which is exactly the same as the result, 1/ sin θ, that we got
on p. 219 by analyzing force vectors. What this shows is that
Newton’s laws and conservation laws are not logically separate,
but rather are very closely related descriptions of nature. In the
cases where Newton’s laws are true, they give the same answers
as the conservation laws. This is an example of a more gen-
eral idea, called the correspondence principle, about how science
progresses over time. When a newer, more general theory is pro-
posed to replace an older theory, the new theory must agree with
the old one in the realm of applicability of the old theory, since the
old theory only became accepted as a valid theory by being ver-
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Discussion question A. The
water behind the Hoover Dam
has energy because of its posi-
tion relative to the planet earth,
which is attracting it with a gravi-
tational force. Letting water down
to the bottom of the dam converts
that energy into energy of motion.
When the water reaches the
bottom of the dam, it hits turbine
blades that drive generators, and
its energy of motion is converted
into electrical energy.

ified experimentally in a variety of experiments. In other words,
the new theory must be backward-compatible with the old one.
Even though conservation laws can prove things that Newton’s
laws can’t (that perpetual motion is impossible, for example), they
aren’t going to disprove Newton’s laws when applied to mechani-
cal systems where we already knew Newton’s laws were valid.

Discussion question

A Hydroelectric power (water flowing over a dam to spin turbines)
appears to be completely free. Does this violate conservation of energy?
If not, then what is the ultimate source of the electrical energy produced
by a hydroelectric plant?

B How does the proof in example 3 fail if the assumption of a frictionless
surface doesn’t hold?

11.3 A numerical scale of energy
Energy comes in a variety of forms, and physicists didn’t discover all
of them right away. They had to start somewhere, so they picked
one form of energy to use as a standard for creating a numerical
energy scale. (In fact the history is complicated, and several different
energy units were defined before it was realized that there was a
single general energy concept that deserved a single consistent unit
of measurement.) One practical approach is to define an energy
unit based on heating water. The SI unit of energy is the joule,
J, (rhymes with “cool”), named after the British physicist James
Joule. One Joule is the amount of energy required in order to heat
0.24 g of water by 1◦C. The number 0.24 is not worth memorizing.

Note that heat, which is a form of energy, is completely differ-
ent from temperature, which is not. Twice as much heat energy
is required to prepare two cups of coffee as to make one, but two
cups of coffee mixed together don’t have double the temperature.
In other words, the temperature of an object tells us how hot it is,
but the heat energy contained in an object also takes into account
the object’s mass and what it is made of.1

Later we will encounter other quantities that are conserved in
physics, such as momentum and angular momentum, and the method
for defining them will be similar to the one we have used for energy:
pick some standard form of it, and then measure other forms by
comparison with this standard. The flexible and adaptable nature
of this procedure is part of what has made conservation laws such a
durable basis for the evolution of physics.

1In standard, formal terminology, there is another, finer distinction. The
word “heat” is used only to indicate an amount of energy that is transferred,
whereas “thermal energy” indicates an amount of energy contained in an object.
I’m informal on this point, and refer to both as heat, but you should be aware
of the distinction.
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Heating a swimming pool example 4
. If electricity costs 3.9 cents per MJ (1 MJ = 1 megajoule = 106

J), how much does it cost to heat a 26000-gallon swimming pool
from 10◦C to 18◦C?

. Converting gallons to cm3 gives

26000 gallons× 3780 cm3

1 gallon
= 9.8× 107 cm3 .

Water has a density of 1 gram per cubic centimeter, so the mass
of the water is 9.8 × 107 g. One joule is sufficient to heat 0.24 g
by 1◦C, so the energy needed to heat the swimming pool is

1 J× 9.8× 107 g
0.24 g

× 8◦C
1◦C

= 3.3× 109 J

= 3.3× 103 MJ .

The cost of the electricity is (3.3× 103 MJ)($0.039/MJ)=$130.

Irish coffee example 5
. You make a cup of Irish coffee out of 300 g of coffee at 100◦C
and 30 g of pure ethyl alcohol at 20◦C. One Joule is enough en-
ergy to produce a change of 1◦C in 0.42 g of ethyl alcohol (i.e.,
alcohol is easier to heat than water). What temperature is the
final mixture?

. Adding up all the energy after mixing has to give the same result
as the total before mixing. We let the subscript i stand for the
initial situation, before mixing, and f for the final situation, and use
subscripts c for the coffee and a for the alcohol. In this notation,
we have

total initial energy = total final energy
Eci + Eai = Ecf + Eaf .

We assume coffee has the same heat-carrying properties as wa-
ter. Our information about the heat-carrying properties of the two
substances is stated in terms of the change in energy required for
a certain change in temperature, so we rearrange the equation to
express everything in terms of energy differences:

Eaf − Eai = Eci − Ecf .

Using the given ratios of temperature change to energy change,
we have

Eci − Ecf = (Tci − Tcf )(mc)/(0.24 g)
Eaf − Eai = (Taf − Tai )(ma)/(0.42 g)

Setting these two quantities to be equal, we have

(Taf − Tai )(ma)/(0.42 g) = (Tci − Tcf )(mc)/(0.24 g) .
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In the final mixture the two substances must be at the same tem-
perature, so we can use a single symbol Tf = Tcf = Taf for the
two quantities previously represented by two different symbols,

(Tf − Tai )(ma)/(0.42 g) = (Tci − Tf )(mc)/(0.24 g) .

Solving for Tf gives

Tf =
Tci

mc
0.24 + Tai

ma
0.42

mc
0.24 + ma

0.42

= 96◦C .

Once a numerical scale of energy has been established for some
form of energy such as heat, it can easily be extended to other types
of energy. For instance, the energy stored in one gallon of gasoline
can be determined by putting some gasoline and some water in an
insulated chamber, igniting the gas, and measuring the rise in the
water’s temperature. (The fact that the apparatus is known as a
“bomb calorimeter” will give you some idea of how dangerous these
experiments are if you don’t take the right safety precautions.) Here
are some examples of other types of energy that can be measured
using the same units of joules:

type of energy example

chemical energy
released by burning

About 50 MJ are released by burning
a kg of gasoline.

energy required to
break an object

When a person suffers a spiral frac-
ture of the thighbone (a common
type in skiing accidents), about 2 J
of energy go into breaking the bone.

energy required to
melt a solid substance

7 MJ are required to melt 1 kg of tin.

chemical energy
released by digesting
food

A bowl of Cheeries with milk provides
us with about 800 kJ of usable en-
ergy.

raising a mass against
the force of gravity

Lifting 1.0 kg through a height of 1.0
m requires 9.8 J.

nuclear energy
released in fission

1 kg of uranium oxide fuel consumed
by a reactor releases 2 × 1012 J of
stored nuclear energy.

It is interesting to note the disproportion between the megajoule
energies we consume as food and the joule-sized energies we expend
in physical activities. If we could perceive the flow of energy around
us the way we perceive the flow of water, eating a bowl of cereal
would be like swallowing a bathtub’s worth of energy, the continual
loss of body heat to one’s environment would be like an energy-hose
left on all day, and lifting a bag of cement would be like flicking
it with a few tiny energy-drops. The human body is tremendously
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f / Example 6.

inefficient. The calories we “burn” in heavy exercise are almost all
dissipated directly as body heat.

You take the high road and I’ll take the low road. example 6
. Figure f shows two ramps which two balls will roll down. Com-
pare their final speeds, when they reach point B. Assume friction
is negligible.

. Each ball loses some energy because of its decreasing height
above the earth, and conservation of energy says that it must gain
an equal amount of energy of motion (minus a little heat created
by friction). The balls lose the same amount of height, so their
final speeds must be equal.

It’s impressive to note the complete impossibility of solving this
problem using only Newton’s laws. Even if the shape of the track
had been given mathematically, it would have been a formidable
task to compute the balls’ final speed based on vector addition of
the normal force and gravitational force at each point along the way.

How new forms of energy are discovered

Textbooks often give the impression that a sophisticated physics
concept was created by one person who had an inspiration one day,
but in reality it is more in the nature of science to rough out an idea
and then gradually refine it over many years. The idea of energy
was tinkered with from the early 1800’s on, and new types of energy
kept getting added to the list.

To establish the existence of a new form of energy, a physicist
has to

(1) show that it could be converted to and from other forms of
energy; and

(2) show that it related to some definite measurable property of
the object, for example its temperature, motion, position relative to
another object, or being in a solid or liquid state.

For example, energy is released when a piece of iron is soaked in
water, so apparently there is some form of energy already stored in
the iron. The release of this energy can also be related to a definite
measurable property of the chunk of metal: it turns reddish-orange.
There has been a chemical change in its physical state, which we
call rusting.

Although the list of types of energy kept getting longer and
longer, it was clear that many of the types were just variations on
a theme. There is an obvious similarity between the energy needed
to melt ice and to melt butter, or between the rusting of iron and
many other chemical reactions. The topic of the next chapter is
how this process of simplification reduced all the types of energy
to a very small number (four, according to the way I’ve chosen to
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count them).

It might seem that if the principle of conservation of energy ever
appeared to be violated, we could fix it up simply by inventing some
new type of energy to compensate for the discrepancy. This would
be like balancing your checkbook by adding in an imaginary deposit
or withdrawal to make your figures agree with the bank’s statements.
Step (2) above guards against this kind of chicanery. In the 1920s
there were experiments that suggested energy was not conserved in
radioactive processes. Precise measurements of the energy released
in the radioactive decay of a given type of atom showed inconsistent
results. One atom might decay and release, say, 1.1 × 10−10 J of
energy, which had presumably been stored in some mysterious form
in the nucleus. But in a later measurement, an atom of exactly the
same type might release 1.2× 10−10 J. Atoms of the same type are
supposed to be identical, so both atoms were thought to have started
out with the same energy. If the amount released was random, then
apparently the total amount of energy was not the same after the
decay as before, i.e., energy was not conserved.

Only later was it found that a previously unknown particle,
which is very hard to detect, was being spewed out in the decay.
The particle, now called a neutrino, was carrying off some energy,
and if this previously unsuspected form of energy was added in,
energy was found to be conserved after all. The discovery of the
energy discrepancies is seen with hindsight as being step (1) in the
establishment of a new form of energy, and the discovery of the neu-
trino was step (2). But during the decade or so between step (1)
and step (2) (the accumulation of evidence was gradual), physicists
had the admirable honesty to admit that the cherished principle of
conservation of energy might have to be discarded.

self-check A
How would you carry out the two steps given above in order to estab-
lish that some form of energy was stored in a stretched or compressed
spring? . Answer, p. 526

Mass Into Energy
Einstein showed that mass itself could be converted to and from energy,
according to his celebrated equation E = mc2, in which c is the speed
of light. We thus speak of mass as simply another form of energy, and
it is valid to measure it in units of joules. The mass of a 15-gram pencil
corresponds to about 1.3× 1015 J. The issue is largely academic in the
case of the pencil, because very violent processes such as nuclear re-
actions are required in order to convert any significant fraction of an ob-
ject’s mass into energy. Cosmic rays, however, are continually striking
you and your surroundings and converting part of their energy of motion
into the mass of newly created particles. A single high-energy cosmic
ray can create a “shower” of millions of previously nonexistent particles
when it strikes the atmosphere. Einstein’s theories are discussed later
in this book.
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Even today, when the energy concept is relatively mature and sta-
ble, a new form of energy has been proposed based on observations
of distant galaxies whose light began its voyage to us billions of years
ago. Astronomers have found that the universe’s continuing expansion,
resulting from the Big Bang, has not been decelerating as rapidly in the
last few billion years as would have been expected from gravitational
forces. They suggest that a new form of energy may be at work.

Discussion question

A I’m not making this up. XS Energy Drink has ads that read like this:
All the “Energy” ... Without the Sugar! Only 8 Calories! Comment on
this.

11.4 Kinetic energy
The technical term for the energy associated with motion is kinetic
energy, from the Greek word for motion. (The root is the same as
the root of the word “cinema” for a motion picture, and in French
the term for kinetic energy is “énergie cinétique.”) To find how
much kinetic energy is possessed by a given moving object, we must
convert all its kinetic energy into heat energy, which we have chosen
as the standard reference type of energy. We could do this, for
example, by firing projectiles into a tank of water and measuring the
increase in temperature of the water as a function of the projectile’s
mass and velocity. Consider the following data from a series of three
such experiments:

m (kg) v (m/s) energy (J)

1.00 1.00 0.50

1.00 2.00 2.00

2.00 1.00 1.00

Comparing the first experiment with the second, we see that dou-
bling the object’s velocity doesn’t just double its energy, it quadru-
ples it. If we compare the first and third lines, however, we find
that doubling the mass only doubles the energy. This suggests that
kinetic energy is proportional to mass and to the square of veloc-
ity, KE ∝ mv2, and further experiments of this type would indeed
establish such a general rule. The proportionality factor equals 0.5
because of the design of the metric system, so the kinetic energy of
a moving object is given by

KE =
1

2
mv2 .

The metric system is based on the meter, kilogram, and second,
with other units being derived from those. Comparing the units on
the left and right sides of the equation shows that the joule can be
reexpressed in terms of the basic units as kg·m2/s2.

Students are often mystified by the occurrence of the factor of
1/2, but it is less obscure than it looks. The metric system was
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designed so that some of the equations relating to energy would
come out looking simple, at the expense of some others, which had
to have inconvenient conversion factors in front. If we were using
the old British Engineering System of units in this course, then we’d
have the British Thermal Unit (BTU) as our unit of energy. In
that system, the equation you’d learn for kinetic energy would have
an inconvenient proportionality constant, KE =

(
1.29× 10−3

)
mv2,

with KE measured in units of BTUs, v measured in feet per second,
and so on. At the expense of this inconvenient equation for kinetic
energy, the designers of the British Engineering System got a simple
rule for calculating the energy required to heat water: one BTU
per degree Fahrenheit per pound. The inventor of kinetic energy,
Thomas Young, actually defined it as KE = mv2, which meant that
all his other equations had to be different from ours by a factor of
two. All these systems of units work just fine as long as they are
not combined with one another in an inconsistent way.

Energy released by a comet impact example 7
.Comet Shoemaker-Levy, which struck the planet Jupiter in 1994,
had a mass of roughly 4 × 1013 kg, and was moving at a speed
of 60 km/s. Compare the kinetic energy released in the impact to
the total energy in the world’s nuclear arsenals, which is 2× 1019

J. Assume for the sake of simplicity that Jupiter was at rest.

. Since we assume Jupiter was at rest, we can imagine that the
comet stopped completely on impact, and 100% of its kinetic en-
ergy was converted to heat and sound. We first convert the speed
to mks units, v = 6 × 104 m/s, and then plug in to the equation
to find that the comet’s kinetic energy was roughly 7 × 1022 J, or
about 3000 times the energy in the world’s nuclear arsenals.

Is there any way to derive the equation KE = (1/2)mv2 math-
ematically from first principles? No, it is purely empirical. The
factor of 1/2 in front is definitely not derivable, since it is different
in different systems of units. The proportionality to v2 is not even
quite correct; experiments have shown deviations from the v2 rule at
high speeds, an effect that is related to Einstein’s theory of relativ-
ity. Only the proportionality to m is inevitable. The whole energy
concept is based on the idea that we add up energy contributions
from all the objects within a system. Based on this philosophy, it
is logically necessary that a 2-kg object moving at 1 m/s have the
same kinetic energy as two 1-kg objects moving side-by-side at the
same speed.

Energy and relative motion

Although I mentioned Einstein’s theory of relativity above, it’s
more relevant right now to consider how conservation of energy re-
lates to the simpler Galilean idea, which we’ve already studied, that
motion is relative. Galileo’s Aristotelian enemies (and it is no ex-
aggeration to call them enemies!) would probably have objected to
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Discussion question B

conservation of energy. After all, the Galilean idea that an object
in motion will continue in motion indefinitely in the absence of a
force is not so different from the idea that an object’s kinetic energy
stays the same unless there is a mechanism like frictional heating
for converting that energy into some other form.

More subtly, however, it’s not immediately obvious that what
we’ve learned so far about energy is strictly mathematically consis-
tent with the principle that motion is relative. Suppose we verify
that a certain process, say the collision of two pool balls, conserves
energy as measured in a certain frame of reference: the sum of the
balls’ kinetic energies before the collision is equal to their sum after
the collision. (In reality we’d need to add in other forms of energy,
like heat and sound, that are liberated by the collision, but let’s keep
it simple.) But what if we were to measure everything in a frame of
reference that was in a different state of motion? A particular pool
ball might have less kinetic energy in this new frame; for example, if
the new frame of reference was moving right along with it, its kinetic
energy in that frame would be zero. On the other hand, some other
balls might have a greater kinetic energy in the new frame. It’s not
immediately obvious that the total energy before the collision will
still equal the total energy after the collision. After all, the equation
for kinetic energy is fairly complicated, since it involves the square
of the velocity, so it would be surprising if everything still worked
out in the new frame of reference. It does still work out. Homework
problem 13 in this chapter gives a simple numerical example, and
the general proof is taken up in problem 15 on p. 392 (with the
solution given in the back of the book).

Discussion questions

A Suppose that, like Young or Einstein, you were trying out different
equations for kinetic energy to see if they agreed with the experimental
data. Based on the meaning of positive and negative signs of velocity,
why would you suspect that a proportionality to mv would be less likely
than mv2?

B The figure shows a pendulum that is released at A and caught by a
peg as it passes through the vertical, B. To what height will the bob rise
on the right?

11.5 Power
A car may have plenty of energy in its gas tank, but still may not
be able to increase its kinetic energy rapidly. A Porsche doesn’t
necessarily have more energy in its gas tank than a Hyundai, it is
just able to transfer it more quickly. The rate of transferring energy
from one form to another is called power. The definition can be
written as an equation,

P =
∆E

∆t
,
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where the use of the delta notation in the symbol ∆E has the usual
interpretation: the final amount of energy in a certain form minus
the initial amount that was present in that form. Power has units
of J/s, which are abbreviated as watts, W (rhymes with “lots”).

If the rate of energy transfer is not constant, the power at any
instant can be defined as the derivative dE/dt

Converting kilowatt-hours to joules example 8
. The electric company bills you for energy in units of kilowatt-
hours (kilowatts multiplied by hours) rather than in SI units of
joules. How many joules is a kilowatt-hour?

. 1 kilowatt-hour = (1 kW)(1 hour) = (1000 J/s)(3600 s) = 3.6 MJ.

Human wattage example 9
. A typical person consumes 2000 kcal of food in a day, and con-
verts nearly all of that directly to heat. Compare the person’s heat
output to the rate of energy consumption of a 100-watt lightbulb.

. Looking up the conversion factor from calories to joules, we find

∆E = 2000 kcal× 1000 cal
1 kcal

× 4.18 J
1 cal

= 8× 106 J

for our daily energy consumption. Converting the time interval
likewise into mks,

∆t = 1 day× 24 hours
1 day

× 60 min
1 hour

× 60 s
1 min

= 9× 104 s .

Dividing, we find that our power dissipated as heat is 90 J/s = 90
W, about the same as a lightbulb.

Wind power density example 10
Wind power is a renewable energy resource, but it is most prac-
tical in areas where the wind is both strong and reliably strong.
When a horizontal-axis wind turbine faces directly into a wind
flowing at speed v , the air it intercepts in time ∆t forms a cylin-
der whose length is v∆t , and whose mass is proportional to the
same factor. The kinetic energy of this cylinder represents the
maximum energy that can theoretically be extracted in this time.
Since the mass is proportional to v , the kinetic energy is propor-
tional to v × v2 = v3. That is, the “wind power density” varies as
the cube of the wind’s speed.

It is easy to confuse the concepts of force, energy, and power,
especially since they are synonyms in ordinary speech. The table on
the following page may help to clear this up:
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force energy power

conceptual
definition

A force is an interaction
between two objects that
causes a push or a pull.
A force can be defined as
anything that is capable
of changing an object’s
state of motion.

Heating an object, mak-
ing it move faster, or in-
creasing its distance from
another object that is at-
tracting it are all exam-
ples of things that would
require fuel or physical ef-
fort. All these things can
be quantified using a sin-
gle scale of measurement,
and we describe them all
as forms of energy.

Power is the rate at
which energy is trans-
formed from one form
to another or transferred
from one object to an-
other.

operational
definition

A spring scale can be used
to measure force.

If we define a unit of en-
ergy as the amount re-
quired to heat a certain
amount of water by a
1◦C, then we can mea-
sure any other quantity
of energy by transferring
it into heat in water and
measuring the tempera-
ture increase.

Measure the change in the
amount of some form of
energy possessed by an
object, and divide by the
amount of time required
for the change to occur.

scalar or
vector?

vector — has a direction
in space which is the di-
rection in which it pulls or
pushes

scalar — has no direction
in space

scalar — has no direction
in space

unit newtons (N) joules (J) watts (W) = joules/s

Can it run
out? Does it
cost money?

No. I don’t have to
pay a monthly bill for
the meganewtons of force
required to hold up my
house.

Yes. We pay money for
gasoline, electrical energy,
batteries, etc., because
they contain energy.

More power means you
are paying money at a
higher rate. A 100-W
lightbulb costs a certain
number of cents per hour.

Can it be a
property of
an object?

No. A force is a rela-
tionship between two
interacting objects.
A home-run baseball
doesn’t “have” force.

Yes. What a home-run
baseball has is kinetic en-
ergy, not force.

Not really. A 100-W
lightbulb doesn’t “have”
100 W. 100 J/s is the rate
at which it converts elec-
trical energy into light.

11.6 ? Massless particles
Failure of Newton’s laws

One of the main reasons for preferring conservation laws to New-
ton’s laws as a foundation for physics is that conservation laws are
more general. For example, Newton’s laws apply only to matter,
whereas conservation laws can handle light as well. No experiment
in Newton’s day had ever shown anything but zero for the mass

Section 11.6 ? Massless particles 299



or weight of a ray of light, and substituting m = 0 into a = F/m
results in an infinite acceleration, which doesn’t make sense. With
hindsight, this is to be expected because of relativity (section 2.6).
Newton’s laws are only a good approximation for velocities that are
small compared to c, the maximum speed of cause and effect. But
light travels at c, so Newton’s laws are not a good approximation to
the behavior of light.

For insight into the behavior of things that go at exactly c, let’s
consider a case where something goes very close to c. A typical
22-caliber rifle shoots a bullet with a mass of about 3 g at a speed
of about 400 m/s. Now consider the firing of such a rifle as seen
through an ultra-powerful telescope by an alien in a distant galaxy.
We happen to be firing in the direction away from the alien, who
gets a view from over our shoulder. Since the universe is expanding,
our two galaxies are receding from each other. In the alien’s frame,
our own galaxy is the one that is moving — let’s say at c−(200 m/s).
If the two velocities simply added, the bullet would be moving at
c + (200 m/s). But velocities don’t simply add and subtract rela-
tivistically (p. 86), and applying the correct equation for relativistic
combination of velocities, we find that in the alien’s frame, the bullet
flies at only c− (199.9995 m/s). That is, according to the alien, the
energy in the gunpowder only succeeded in accelerating the bullet
by 0.0005 m/s! If we insisted on believing in KE = (1/2)mv2, this
would clearly violate conservation of energy in the alien’s frame of
reference. KE must not only get bigger faster than (1/2)mv2 as v
approaches c, it must blow up to infinity. This gives a mechanical
explanation for why no material object can ever reach or exceed c,
which is reassuring because speeds greater than c lead to violation
of causality.

Ultrarelativistic motion

The bullet as seen in the alien’s frame of reference is an example
of an ultrarelativistic particle, meaning one moving very close to c.
We can fairly easily infer quite a bit about how kinetic energy must
behave at ultrarelativistic speeds. We know that it must get larger
and larger, and the question is how large it is when the speed differs
from c by some small amount.

A good way of thinking about an ultrarelativistic particle is that
it’s a particle with a very small mass. For example, the subatomic
particle called the neutrino has a very small mass, thousands of times
smaller than that of the electron. Neutrinos are emitted in radioac-
tive decay, and because the neutrino’s mass is so small, the amount
of energy available in these decays is always enough to accelerate
it to very close to the speed of light. Nobody has ever succeeded
in observing a neutrino that was not ultrarelativistic. When a par-
ticle’s mass is very small, the mass becomes difficult to measure.
For almost 70 years after the neutrino was discovered, its mass was
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thought to be zero. Similarly, we currently believe that a ray of light
has no mass, but it it always possible that its mass will be found
to be nonzero at some point in the future. A ray of light can be
modeled as an ultrarelativistic particle.

Let’s compare ultrarelativistic particles with train cars. A single
car with kinetic energy E has different properties than a train of two
cars each with kinetic energy E/2. The single car has half the mass
and a speed that is greater by a factor of

√
2. But the same is not

true for ultrarelativistic particles. Since an idealized ultrarelativistic
particle has a mass too small to be detectable in any experiment,
we can’t detect the difference between m and 2m. Furthermore,
ultrarelativistic particles move at close to c, so there is no observable
difference in speed. Thus we expect that a single ultrarelativistic
particle with energy E compared with two such particles, each with
energy E/2, should have all the same properties as measured by a
mechanical detector.

An idealized zero-mass particle also has no frame in which it
can be at rest. It always travels at c, and no matter how fast we
chase after it, we can never catch up. We can, however, observe
it in different frames of reference, and we will find that its energy
is different. For example, distant galaxies are receding from us at
substantial fractions of c, and when we observe them through a
telescope, they appear very dim not just because they are very far
away but also because their light has less energy in our frame than
in a frame at rest relative to the source. This effect must be such
that changing frames of reference according to a specific Lorentz
transformation always changes the energy of the particle by a fixed
factor, regardless of the particle’s original energy; for if not, then
the effect of a Lorentz transformation on a single particle of energy
E would be different from its effect on two particles of energy E/2.

How does this energy-shift factor depend on the velocity v of the
Lorentz transformation? Actually, it is more convenient to express
this in terms of a different variable rather than v. In nonrelativistic
physics, we change frames of reference simply by adding a constant
onto all our velocities, but this is only a low-velocity approximation.
For this reason, it will be more convenient to work with a variable s,
defined as the factor by which the long diagonal of a parallelogram
like the ones in section 2.6 stretches under a Lorentz transformation.
For example, we found in problem 21 on p. 95 that a velocity of
0.6c corresponds to a stretch factor s = 2. The convenient thing
about stretch factors is that when we change to a new frame of
reference, they simply multiply. For example, in problem 21 you
found the result of combining a velocity of 0.6c with another velocity
of 0.6c by drawing a parallelogram with its long axis stretched by
a factor of 2 × 2 = 4. The relation between s and v is given by
s =

√
(1 + v)/(1− v) (in units with c = 1; see problems 18 on p. 94

and 22 on p. 96).
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A low-speed approximation example 11
What happens when the the velocity is small compared to c? In
units where c = 1, this means that v is small compared to 1. The
stretch factor s =

√
(1 + v )/(1− v ) can then be approximated by

taking 1/(1−v ) ≈ 1+v and
√

1 + ε ≈ 1+ε/2, so that s ≈ 1+v .

Let’s write f(s) for the energy-shift factor that results from a
given Lorentz transformation. Since a Lorentz transformation s1 fol-
lowed by a second transformation s2 is equivalent to a single trans-
formation by s1s2, we must have f(s1s2) = f(s1)f(s2). This tightly
constrains the form of the function f ; it must be something like
f(s) = sn, where n is a constant. The interpretation of n is that
under a Lorentz transformation corresponding to 1% of c, energies
of ultrarelativistic particles change by about n% (making the ap-
proximation that v = .01 gives s ≈ 1.01). We postpone until p. 385
the proof that n = 1, which is also in agreement with experiments
with rays of light.

Our final result is that the energy of an ultrarelativistic particle
is simply proportional to its Lorentz “stretch factor” s. Even in
the case where the particle is truly massless, so that s doesn’t have
any finite value, we can still find how the energy differs according
to different observers by finding the s of the Lorentz transformation
between the two observers’ frames of reference.

An astronomical energy shift example 12
. For quantum-mechanical reasons, a hydrogen atom can only
exist in states with certain specific energies. By conservation
of energy, the atom can therefore only absorb or emit light that
has an energy equal to the difference between two such atomic
energies. The outer atmosphere of a star is mostly made of
monoatomic hydrogen, and one of the energies that a hydrogen
atom can absorb or emit is 3.0276 × 10−19 J. When we observe
light from stars in the Andromeda Galaxy, it has an energy of
3.0306 × 10−19 J. If this is assumed to be due entirely to the
motion of the Milky Way and Andromeda Galaxy relative to one
another, along the line connecting them, find the direction and
magnitude of this velocity.

. The energy is shifted upward, which means that the Andromeda
Galaxy is moving toward us. (Galaxies at cosmological distances
are always observed to be receding from one another, but this
doesn’t necessarily hold for galaxies as close as these.) Relating
the energy shift to the velocity, we have

E ′

E
= s =

√
(1 + v )/(1− v ) .

Since the shift is only about one part per thousand, the velocity
is small compared to c — or small compared to 1 in units where
c = 1. Therefore we can approximate as in example 11, s ≈ 1+v ,
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and we find

v ≈ s − 1 =
E ′

E
− 1 = 1.0× 10−3 .

This is in units where c = 1. Converting to SI units, where c 6= 1,
we have v = (1.0×10−3)c = 300 km/s. Although the Andromeda
Galaxy’s tangential motion is not accurately known, it is consid-
ered likely that it will collide with the Milky Way in a few billion
years.

A symmetry property of the energy shift example 13
Suppose that A and B are at rest relative to one another, but C is
moving along the line between A and B. A sends a pulse of laser
light to C, who then measures its energy and transmits another
pulse to B having the same energy. The pulse accumulates two
energy shifts, and the result is their product s(v )s(−v ). But C
didn’t actually need to absorb the original pulse and retransmit it;
the results would have been the same if C had just stayed out of
the way. Therefore this product must equal 1, so we must have
s(−v )s(v ) = 1, which can be verified directly from the equation.

The Ives-Stilwell experiment example 14
The result of example 13 was the basis of one of the earliest labo-
ratory tests of special relativity, by Ives and Stilwell in 1938. They
observed the light emitted by a beam of excited H+

2 and H+
3 ions

with speeds of a few tenths of a percent of c. Measuring the light
from both ahead of and behind the beams, they found that the
product s(v )s(−v ) was equal to 1, as predicted by relativity. If rel-
ativity had been false, then one would have expected the product
to differ from 1 by an amount that would have been detectable in
their experiment. In 2003, Saathoff et al. carried out an extremely
precise version of the Ives-Stilwell technique with Li+ ions moving
at 6.4% of c. The energies observed, in units of 10−28 J, were:

Eo = 3620927488± 3
(unshifted energy)

Eos(v ) = 3859620256± 0.6
(shifted energy, forward)

Eos(−v ) = 3396996334± 3
(shifted energy, backward)√

Eos(v ) · Eos(−v ) = 3620927487± 2

The results show incredibly precise agreement between Eo and√
Eos(v ) · Eos(−v ), as expected relativistically because s(v )s(−v )

is supposed to equal 1. The agreement extends to 9 significant
figures, whereas if relativity had been false there should have
been a relative disagreement of about v2 = .004, i.e., a discrep-
ancy in the third significant figure. The spectacular agreement
with theory has made this experiment a lightning rod for anti-
relativity kooks.
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Summary
Selected vocabulary
energy . . . . . . A numerical scale used to measure the heat,

motion, or other properties that would require
fuel or physical effort to put into an object; a
scalar quantity with units of joules (J).

power . . . . . . . The rate of transferring energy; a scalar quan-
tity with units of watts (W).

kinetic energy . . The energy an object possesses because of its
motion.

heat . . . . . . . . A form of energy that relates to temperature.
Heat is different from temperature because an
object with twice as much mass requires twice
as much heat to increase its temperature by
the same amount. Heat is measured in joules,
temperature in degrees. (In standard termi-
nology, there is another, finer distinction be-
tween heat and thermal energy, which is dis-
cussed below. In this book, I informally refer
to both as heat.)

temperature . . . What a thermometer measures. Objects left in
contact with each other tend to reach the same
temperature. Cf. heat. As discussed in more
detail in chapter 2, temperature is essentially
a measure of the average kinetic energy per
molecule.

Notation
E . . . . . . . . . energy
J . . . . . . . . . . joules, the SI unit of energy
KE . . . . . . . . kinetic energy
P . . . . . . . . . power
W . . . . . . . . . watts, the SI unit of power; equivalent to J/s

Other terminology and notation
Q or ∆Q . . . . . the amount of heat transferred into or out of

an object
K or T . . . . . . alternative symbols for kinetic energy, used in

the scientific literature and in most advanced
textbooks

thermal energy . Careful writers make a distinction between
heat and thermal energy, but the distinction
is often ignored in casual speech, even among
physicists. Properly, thermal energy is used
to mean the total amount of energy possessed
by an object, while heat indicates the amount
of thermal energy transferred in or out. The
term heat is used in this book to include both
meanings.
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Summary

Heating an object, making it move faster, or increasing its dis-
tance from another object that is attracting it are all examples of
things that would require fuel or physical effort. All these things can
be quantified using a single scale of measurement, and we describe
them all as forms of energy. The SI unit of energy is the Joule.
The reason why energy is a useful and important quantity is that
it is always conserved. That is, it cannot be created or destroyed
but only transferred between objects or changed from one form to
another. Conservation of energy is the most important and broadly
applicable of all the laws of physics, more fundamental and general
even than Newton’s laws of motion.

Heating an object requires a certain amount of energy per degree
of temperature and per unit mass, which depends on the substance
of which the object consists. Heat and temperature are completely
different things. Heat is a form of energy, and its SI unit is the joule
(J). Temperature is not a measure of energy. Heating twice as much
of something requires twice as much heat, but double the amount
of a substance does not have double the temperature.

The energy that an object possesses because of its motion is
called kinetic energy. Kinetic energy is related to the mass of the
object and the magnitude of its velocity vector by the equation

KE =
1

2
mv2 .

Power is the rate at which energy is transformed from one form
to another or transferred from one object to another,

P =
dE

dt

The SI unit of power is the watt (W).

The equation KE = (1/2)mv2 is a nonrelativistic approxima-
tion, valid at speeds that are small compared to c. In the oppo-
site limit, of a particle with a speed very close to c, the energy is
proportional to the “stretch factor” of the Lorentz transformation,
s =

√
(1 + v)/(1− v) (in units with c = 1), for v → +c and 1/s for

v → −c. This gives a mechanical explanation for why no material
object can ever reach or exceed c, which is reassuring because speeds
greater than c lead to violation of causality.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Can kinetic energy ever be less than zero? Explain. [Based
on a problem by Serway and Faughn.]

2 Estimate the kinetic energy of an Olympic sprinter.

3 You are driving your car, and you hit a brick wall head on,
at full speed. The car has a mass of 1500 kg. The kinetic energy
released is a measure of how much destruction will be done to the car
and to your body. Calculate the energy released if you are traveling
at (a) 40 mi/hr, and again (b) if you’re going 80 mi/hr. What is
counterintuitive about this, and what implication does this have for
driving at high speeds?

√

4 The following table gives the amount of energy required in
order to heat, melt, or boil a gram of water.
heat 1 g of ice by 1◦C 2.05 J
melt 1 g of ice 333 J
heat 1 g of liquid by 1◦C 4.19 J
boil 1 g of water 2500 J
heat 1 g of steam by 1◦C 2.01 J

(a) How much energy is required in order to convert 1.00 g of ice at
-20 ◦C into steam at 137 ◦C?

√

(b) What is the minimum amount of hot water that could melt 1.00
g of ice?

√

5 A closed system can be a bad thing — for an astronaut
sealed inside a space suit, getting rid of body heat can be difficult.
Suppose a 60-kg astronaut is performing vigorous physical activity,
expending 200 W of power. If none of the heat can escape from her
space suit, how long will it take before her body temperature rises
by 6◦C(11◦F), an amount sufficient to kill her? Assume that the
amount of heat required to raise her body temperature by 1◦C is
the same as it would be for an equal mass of water. Express your
answer in units of minutes.

√
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6 A bullet flies through the air, passes through a paperback
book, and then continues to fly through the air beyond the book.
When is there a force? When is there energy?

. Solution, p. 519

7 Experiments show that the power consumed by a boat’s en-
gine is approximately proportional to third power of its speed. (We
assume that it is moving at constant speed.) (a) When a boat is crus-
ing at constant speed, what type of energy transformation do you
think is being performed? (b) If you upgrade to a motor with double
the power, by what factor is your boat’s crusing speed increased?
[Based on a problem by Arnold Arons.] . Solution, p. 519

8 Object A has a kinetic energy of 13.4 J. Object B has a mass
that is greater by a factor of 3.77, but is moving more slowly by
a factor of 2.34. What is object B’s kinetic energy? [Based on a
problem by Arnold Arons.] . Solution, p. 519

9 Example 10 on page 298 showed that the power produced by
a wind turbine is proportional to the cube of the wind speed v. Von
Kármán found empirically that when a fluid flows turbulently over a
surface, the speed of the fluid is often well approximated by v ∝ z1/7,
where z is the distance from the surface. Wind turbine towers are
often constructed at heights of 50 m, but surveys of wind speeds are
usually conducted at heights of about 3 m. By what factor should
the predicted wind power density be scaled up relative to the survey
data?

√

10 The moon doesn’t really just orbit the Earth. By Newton’s
third law, the moon’s gravitational force on the earth is the same as
the earth’s force on the moon, and the earth must respond to the
moon’s force by accelerating. If we consider the earth in moon in
isolation and ignore outside forces, then Newton’s first law says their
common center of mass doesn’t accelerate, i.e., the earth wobbles
around the center of mass of the earth-moon system once per month,
and the moon also orbits around this point. The moon’s mass is 81
times smaller than the earth’s. Compare the kinetic energies of the
earth and moon. (We know that the center of mass is a kind of
balance point, so it must be closer to the earth than to the moon.
In fact, the distance from the earth to the center of mass is 1/81
of the distance from the moon to the center of mass, which makes
sense intuitively, and can be proved rigorously using the equation
on page 374.)

11 My 1.25 kW microwave oven takes 126 seconds to bring 250
g of water from room temperature to a boil. What percentage of
the power is being wasted? Where might the rest of the energy be
going? . Solution, p. 520

Problems 307



12 The multiflash photograph shows a collision between two
pool balls. The ball that was initially at rest shows up as a dark
image in its initial position, because its image was exposed several
times before it was struck and began moving. By making measure-
ments on the figure, determine numerically whether or not energy
appears to have been conserved in the collision. What systematic
effects would limit the accuracy of your test? [From an example in
PSSC Physics.]

Problem 12.

13 This problem is a numerical example of the imaginary exper-
iment discussed on p. 296 regarding the relationship between energy
and relative motion. Let’s say that the pool balls both have masses
of 1.00 kg. Suppose that in the frame of reference of the pool table,
the cue ball moves at a speed of 1.00 m/s toward the eight ball,
which is initially at rest. The collision is head-on, and as you can
verify for yourself the next time you’re playing pool, the result of
such a collision is that the incoming ball stops dead and the ball that
was struck takes off with the same speed originally possessed by the
incoming ball. (This is actually a bit of an idealization. To keep
things simple, we’re ignoring the spin of the balls, and we assume
that no energy is liberated by the collision as heat or sound.) (a)
Calculate the total initial kinetic energy and the total final kinetic
energy, and verify that they are equal. (b) Now carry out the whole
calculation again in the frame of reference that is moving in the same
direction that the cue ball was initially moving, but at a speed of
0.50 m/s. In this frame of reference, both balls have nonzero initial
and final velocities, which are different from what they were in the
table’s frame. [See also problem 15 on p. 392.]
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14 One theory about the destruction of the space shuttle Columbia
in 2003 is that one of its wings had been damaged on liftoff by a
chunk of foam insulation that fell off of one of its external fuel tanks.
The New York Times reported on June 5, 2003, that NASA engi-
neers had recreated the impact to see if it would damage a mock-up
of the shuttle’s wing. “Before last week’s test, many engineers at
NASA said they thought lightweight foam could not harm the seem-
ingly tough composite panels, and privately predicted that the foam
would bounce off harmlessly, like a Nerf ball.” In fact, the 1.7-pound
piece of foam, moving at 531 miles per hour, did serious damage.
A member of the board investigating the disaster said this demon-
strated that “people’s intuitive sense of physics is sometimes way
off.” (a) Compute the kinetic energy of the foam, and (b) compare
with the energy of a 170-pound boulder moving at 5.3 miles per
hour (the speed it would have if you dropped it from about knee-
level).

√

(c) The boulder is a hundred times more massive, but its speed
is a hundred times smaller, so what’s counterintuitive about your
results?

15 The figure above is from a classic 1920 physics textbook
by Millikan and Gale. It represents a method for raising the water
from the pond up to the water tower, at a higher level, without
using a pump. Water is allowed into the drive pipe, and once it is
flowing fast enough, it forces the valve at the bottom closed. Explain
how this works in terms of conservation of mass and energy. (Cf.
example 1 on page 287.)
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16 All stars, including our sun, show variations in their light
output to some degree. Some stars vary their brightness by a factor
of two or even more, but our sun has remained relatively steady dur-
ing the hundred years or so that accurate data have been collected.
Nevertheless, it is possible that climate variations such as ice ages
are related to long-term irregularities in the sun’s light output. If
the sun was to increase its light output even slightly, it could melt
enough Antarctic ice to flood all the world’s coastal cities. The total
sunlight that falls on Antarctica amounts to about 1 × 1016 watts.
Presently, this heat input to the poles is balanced by the loss of
heat via winds, ocean currents, and emission of infrared light, so
that there is no net melting or freezing of ice at the poles from year
to year. Suppose that the sun changes its light output by some small
percentage, but there is no change in the rate of heat loss by the
polar caps. Estimate the percentage by which the sun’s light output
would have to increase in order to melt enough ice to raise the level
of the oceans by 10 meters over a period of 10 years. (This would be
enough to flood New York, London, and many other cities.) Melting
1 kg of ice requires 3× 103 J.

310 Chapter 11 Conservation of energy



Do these forms of energy have anything in common?

Chapter 12

Simplifying the energy zoo

Variety is the spice of life, not of science. The figure shows a few
examples from the bewildering array of forms of energy that sur-
rounds us. The physicist’s psyche rebels against the prospect of a
long laundry list of types of energy, each of which would require
its own equations, concepts, notation, and terminology. The point
at which we’ve arrived in the study of energy is analogous to the
period in the 1960’s when a half a dozen new subatomic particles
were being discovered every year in particle accelerators. It was an
embarrassment. Physicists began to speak of the “particle zoo,”
and it seemed that the subatomic world was distressingly complex.
The particle zoo was simplified by the realization that most of the
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new particles being whipped up were simply clusters of a previously
unsuspected set of more fundamental particles (which were whimsi-
cally dubbed quarks, a made-up word from a line of poetry by James
Joyce, “Three quarks for Master Mark.”) The energy zoo can also
be simplified, and it is the purpose of this chapter to demonstrate
the hidden similarities between forms of energy as seemingly differ-
ent as heat and motion.

a / A vivid demonstration that
heat is a form of motion. A small
amount of boiling water is poured
into the empty can, which rapidly
fills up with hot steam. The can
is then sealed tightly, and soon
crumples. This can be explained
as follows. The high tempera-
ture of the steam is interpreted as
a high average speed of random
motions of its molecules. Before
the lid was put on the can, the
rapidly moving steam molecules
pushed their way out of the can,
forcing the slower air molecules
out of the way. As the steam in-
side the can thinned out, a sta-
ble situation was soon achieved,
in which the force from the less
dense steam molecules moving
at high speed balanced against
the force from the more dense but
slower air molecules outside. The
cap was put on, and after a while
the steam inside the can reached
the same temperature as the air
outside. The force from the cool,
thin steam no longer matched the
force from the cool, dense air out-
side, and the imbalance of forces
crushed the can.

12.1 Heat is kinetic energy
What is heat really? Is it an invisible fluid that your bare feet soak
up from a hot sidewalk? Can one ever remove all the heat from an
object? Is there a maximum to the temperature scale?

The theory of heat as a fluid seemed to explain why colder ob-
jects absorbed heat from hotter ones, but once it became clear that
heat was a form of energy, it began to seem unlikely that a material
substance could transform itself into and out of all those other forms
of energy like motion or light. For instance, a compost pile gets hot,
and we describe this as a case where, through the action of bacteria,
chemical energy stored in the plant cuttings is transformed into heat
energy. The heating occurs even if there is no nearby warmer object
that could have been leaking “heat fluid” into the pile.

An alternative interpretation of heat was suggested by the theory
that matter is made of atoms. Since gases are thousands of times less
dense than solids or liquids, the atoms (or clusters of atoms called
molecules) in a gas must be far apart. In that case, what is keeping
all the air molecules from settling into a thin film on the floor of the
room in which you are reading this book? The simplest explanation
is that they are moving very rapidly, continually ricocheting off of
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b / Random motion of atoms
in a gas, a liquid, and a solid.

the floor, walls, and ceiling. Though bizarre, the cloud-of-bullets
image of a gas did give a natural explanation for the surprising
ability of something as tenuous as a gas to exert huge forces. Your
car’s tires can hold it up because you have pumped extra molecules
into them. The inside of the tire gets hit by molecules more often
than the outside, forcing it to stretch and stiffen.

The outward forces of the air in your car’s tires increase even
further when you drive on the freeway for a while, heating up the
rubber and the air inside. This type of observation leads naturally
to the conclusion that hotter matter differs from colder in that its
atoms’ random motion is more rapid. In a liquid, the motion could
be visualized as people in a milling crowd shoving past each other
more quickly. In a solid, where the atoms are packed together, the
motion is a random vibration of each atom as it knocks against its
neighbors.

We thus achieve a great simplification in the theory of heat. Heat
is simply a form of kinetic energy, the total kinetic energy of random
motion of all the atoms in an object. With this new understanding,
it becomes possible to answer at one stroke the questions posed at
the beginning of the section. Yes, it is at least theoretically possible
to remove all the heat from an object. The coldest possible temper-
ature, known as absolute zero, is that at which all the atoms have
zero velocity, so that their kinetic energies, (1/2)mv2, are all zero.
No, there is no maximum amount of heat that a certain quantity of
matter can have, and no maximum to the temperature scale, since
arbitrarily large values of v can create arbitrarily large amounts of
kinetic energy per atom.

The kinetic theory of heat also provides a simple explanation of
the true nature of temperature. Temperature is a measure of the
amount of energy per molecule, whereas heat is the total amount of
energy possessed by all the molecules in an object.

There is an entire branch of physics, called thermodynamics,
that deals with heat and temperature and forms the basis for tech-
nologies such as refrigeration.

Thermodynamics is not covered in this book, and I have pro-
vided here only a brief overview of the thermodynamic concepts
that relate directly to energy, glossing over at least one point that
would be dealt with more carefully in a thermodynamics course: it
is really only true for a gas that all the heat is in the form of ki-
netic energy. In solids and liquids, the atoms are close enough to
each other to exert intense electrical forces on each other, and there
is therefore another type of energy involved, the energy associated
with the atoms’ distances from each other. Strictly speaking, heat
energy is defined not as energy associated with random motion of
molecules but as any form of energy that can be conducted between
objects in contact, without any force.
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c / The skater has converted
all his kinetic energy into potential
energy on the way up the side of
the pool.

12.2 Potential energy: energy of distance or
closeness

We have already seen many examples of energy related to the dis-
tance between interacting objects. When two objects participate in
an attractive noncontact force, energy is required to bring them far-
ther apart. In both of the perpetual motion machines that started
off the previous chapter, one of the types of energy involved was the
energy associated with the distance between the balls and the earth,
which attract each other gravitationally. In the perpetual motion
machine with the magnet on the pedestal, there was also energy
associated with the distance between the magnet and the iron ball,
which were attracting each other.

The opposite happens with repulsive forces: two socks with the
same type of static electric charge will repel each other, and cannot
be pushed closer together without supplying energy.

In general, the term potential energy, with algebra symbol PE, is
used for the energy associated with the distance between two objects
that attract or repel each other via a force that depends on the
distance between them. Forces that are not determined by distance
do not have potential energy associated with them. For instance,
the normal force acts only between objects that have zero distance
between them, and depends on other factors besides the fact that
the distance is zero. There is no potential energy associated with
the normal force.

The following are some commonplace examples of potential en-
ergy:

gravitational potential energy: The skateboarder in the photo
has risen from the bottom of the pool, converting kinetic en-
ergy into gravitational potential energy. After being at rest
for an instant, he will go back down, converting PE back into
KE.

magnetic potential energy: When a magnetic compass needle is
allowed to rotate, the poles of the compass change their dis-
tances from the earth’s north and south magnetic poles, con-
verting magnetic potential energy into kinetic energy. (Even-
tually the kinetic energy is all changed into heat by friction,
and the needle settles down in the position that minimizes its
potential energy.)

electrical potential energy: Socks coming out of the dryer cling
together because of attractive electrical forces. Energy is re-
quired in order to separate them.

potential energy of bending or stretching: The force between
the two ends of a spring depends on the distance between
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d / As the skater free-falls,
his PE is converted into KE. (The
numbers would be equally valid
as a description of his motion on
the way up.)

them, i.e., on the length of the spring. If a car is pressed
down on its shock absorbers and then released, the potential
energy stored in the spring is transformed into kinetic and
gravitational potential energy as the car bounces back up.

I have deliberately avoided introducing the term potential en-
ergy up until this point, because it tends to produce unfortunate
connotations in the minds of students who have not yet been inoc-
ulated with a careful description of the construction of a numerical
energy scale. Specifically, there is a tendency to generalize the term
inappropriately to apply to any situation where there is the “poten-
tial” for something to happen: “I took a break from digging, but
I had potential energy because I knew I’d be ready to work hard
again in a few minutes.”

An equation for gravitational potential energy

All the vital points about potential energy can be made by focus-
ing on the example of gravitational potential energy. For simplicity,
we treat only vertical motion, and motion close to the surface of the
earth, where the gravitational force is nearly constant. (The gener-
alization to the three dimensions and varying forces is more easily
accomplished using the concept of work, which is the subject the
next chapter.)

To find an equation for gravitational PE, we examine the case
of free fall, in which energy is transformed between kinetic energy
and gravitational PE. Whatever energy is lost in one form is gained
in an equal amount in the other form, so using the notation ∆KE
to stand for KEf −KEi and a similar notation for PE, we have

[1] ∆KE = −∆PEgrav .

It will be convenient to refer to the object as falling, so that PE
is being changed into KE, but the math applies equally well to an
object slowing down on its way up. We know an equation for kinetic
energy,

[2] KE =
1

2
mv2 ,

so if we can relate v to height, y, we will be able to relate ∆PE to y,
which would tell us what we want to know about potential energy.
The y component of the velocity can be connected to the height via
the constant acceleration equation

[3] v2
f = v2

i + 2a∆y ,

and Newton’s second law provides the acceleration,

[4] a = F/m ,
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in terms of the gravitational force.

The algebra is simple because both equation [2] and equation [3]
have velocity to the second power. Equation [2] can be solved for
v2 to give v2 = 2KE/m, and substituting this into equation [3], we
find

2
KEf
m

= 2
KEi
m

+ 2a∆y .

Making use of equations [1] and [4] gives the simple result

∆PEgrav = −F∆y . [change in gravitational PE

resulting from a change in height ∆y;

F is the gravitational force on the object,

i.e., its weight; valid only near the surface

of the earth, where F is constant]

Dropping a rock example 1
. If you drop a 1-kg rock from a height of 1 m, how many joules
of KE does it have on impact with the ground? (Assume that any
energy transformed into heat by air friction is negligible.)

. If we choose the y axis to point up, then Fy is negative, and
equals −(1 kg)(g) = −9.8 N. A decrease in y is represented by a
negative value of ∆y , ∆y = −1 m, so the change in potential en-
ergy is −(−9.8 N)(−1 m) ≈ −10 J. (The proof that newtons mul-
tiplied by meters give units of joules is left as a homework prob-
lem.) Conservation of energy says that the loss of this amount of
PE must be accompanied by a corresponding increase in KE of
10 J.

It may be dismaying to note how many minus signs had to be
handled correctly even in this relatively simple example: a total
of four. Rather than depending on yourself to avoid any mistakes
with signs, it is better to check whether the final result make sense
physically. If it doesn’t, just reverse the sign.

Although the equation for gravitational potential energy was de-
rived by imagining a situation where it was transformed into kinetic
energy, the equation can be used in any context, because all the
types of energy are freely convertible into each other.

Gravitational PE converted directly into heat example 2
. A 50-kg firefighter slides down a 5-m pole at constant velocity.
How much heat is produced?

. Since she slides down at constant velocity, there is no change
in KE. Heat and gravitational PE are the only forms of energy that
change. Ignoring plus and minus signs, the gravitational force on
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her body equals mg, and the amount of energy transformed is

(mg)(5 m) = 2500 J .

On physical grounds, we know that there must have been an in-
crease (positive change) in the heat energy in her hands and in
the flagpole.

Here are some questions and answers about the interpretation of
the equation ∆PEgrav = −F∆y for gravitational potential energy.

Question: In a nutshell, why is there a minus sign in the equation?
Answer: It is because we increase the PE by moving the object in
the opposite direction compared to the gravitational force.

Question: Why do we only get an equation for the change in po-
tential energy? Don’t I really want an equation for the potential
energy itself?
Answer: No, you really don’t. This relates to a basic fact about
potential energy, which is that it is not a well defined quantity in
the absolute sense. Only changes in potential energy are unambigu-
ously defined. If you and I both observe a rock falling, and agree
that it deposits 10 J of energy in the dirt when it hits, then we will
be forced to agree that the 10 J of KE must have come from a loss
of 10 joules of PE. But I might claim that it started with 37 J of PE
and ended with 27, while you might swear just as truthfully that it
had 109 J initially and 99 at the end. It is possible to pick some
specific height as a reference level and say that the PE is zero there,
but it’s easier and safer just to work with changes in PE and avoid
absolute PE altogether.

Question: You referred to potential energy as the energy that two
objects have because of their distance from each other. If a rock
falls, the object is the rock. Where’s the other object?
Answer: Newton’s third law guarantees that there will always be
two objects. The other object is the planet earth.

Question: If the other object is the earth, are we talking about the
distance from the rock to the center of the earth or the distance
from the rock to the surface of the earth?
Answer: It doesn’t matter. All that matters is the change in dis-
tance, ∆y, not y. Measuring from the earth’s center or its surface
are just two equally valid choices of a reference point for defining
absolute PE.

Question: Which object contains the PE, the rock or the earth?
Answer: We may refer casually to the PE of the rock, but techni-
cally the PE is a relationship between the earth and the rock, and
we should refer to the earth and the rock together as possessing the
PE.

Question: How would this be any different for a force other than
gravity?
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e / All these energy transfor-
mations turn out at the atomic
level to be changes in potential
energy resulting from changes in
the distances between atoms.

Answer: It wouldn’t. The result was derived under the assumption
of constant force, but the result would be valid for any other situa-
tion where two objects interacted through a constant force. Gravity
is unusual, however, in that the gravitational force on an object is
so nearly constant under ordinary conditions. The magnetic force
between a magnet and a refrigerator, on the other hand, changes
drastically with distance. The math is a little more complex for a
varying force, but the concepts are the same.

Question: Suppose a pencil is balanced on its tip and then falls
over. The pencil is simultaneously changing its height and rotating,
so the height change is different for different parts of the object.
The bottom of the pencil doesn’t lose any height at all. What do
you do in this situation?
Answer: The general philosophy of energy is that an object’s en-
ergy is found by adding up the energy of every little part of it.
You could thus add up the changes in potential energy of all the
little parts of the pencil to find the total change in potential en-
ergy. Luckily there’s an easier way! The derivation of the equation
for gravitational potential energy used Newton’s second law, which
deals with the acceleration of the object’s center of mass (i.e., its
balance point). If you just define ∆y as the height change of the
center of mass, everything works out. A huge Ferris wheel can be
rotated without putting in or taking out any PE, because its center
of mass is staying at the same height.

self-check A
A ball thrown straight up will have the same speed on impact with the
ground as a ball thrown straight down at the same speed. How can this
be explained using potential energy? . Answer, p. 526

Discussion question

A You throw a steel ball up in the air. How can you prove based on
conservation of energy that it has the same speed when it falls back into
your hand? What if you throw a feather up — is energy not conserved in
this case?

12.3 All energy is potential or kinetic

In the same way that we found that a change in temperature
is really only a change in kinetic energy at the atomic level, we
now find that every other form of energy turns out to be a form
of potential energy. Boiling, for instance, means knocking some of
the atoms (or molecules) out of the liquid and into the space above,
where they constitute a gas. There is a net attractive force between
essentially any two atoms that are next to each other, which is why
matter always prefers to be packed tightly in the solid or liquid state
unless we supply enough potential energy to pull it apart into a gas.
This explains why water stops getting hotter when it reaches the

318 Chapter 12 Simplifying the energy zoo



f / This figure looks similar to
the previous ones, but the scale
is a million times smaller. The
little balls are the neutrons and
protons that make up the tiny nu-
cleus at the center of the uranium
atom. When the nucleus splits
(fissions), the potential energy
change is partly electrical and
partly a change in the potential
energy derived from the force
that holds atomic nuclei together
(known as the strong nuclear
force).

g / A pellet of plutonium-238
glows with its own heat. Its
nuclear potential energy is being
converted into heat, a form of
kinetic energy. Pellets of this type
are used as power supplies on
some space probes.

boiling point: the power being pumped into the water by your stove
begins going into potential energy rather than kinetic energy.

As shown in figure e, every stored form of energy that we en-
counter in everyday life turns out to be a form of potential energy
at the atomic level. The forces between atoms are electrical and
magnetic in nature, so these are actually electrical and magnetic
potential energies.

Even if we wish to include nuclear reactions in the picture, there
still turn out to be only four fundamental types of energy:

kinetic energy (including heat)

gravitational potential energy

electrical and magnetic potential energy

nuclear potential energy

How does light fit into this picture? Optional section 11.6 dis-
cussed the idea of modeling a ray of light as a stream of massless
particles. But the way in which we described the energy of such par-
ticles was completely different from the use of KE = (1/2)mv2 for
objects made of atoms. Since the purpose of this chapter has been
to bring every form of energy under the same roof, this inconsistency
feels unsatisfying. Section 12.4 eliminates this inconsistency.

Discussion question

A Referring back to the pictures at the beginning of the chapter, how
do all these forms of energy fit into the shortened list of categories given
above?
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12.4 ? E=mc2

In section 11.6 we found the relativistic expression for kinetic energy
in the limiting case of an ultrarelativistic particle, i.e., one with a
speed very close to c: its energy is proportional to the “stretch
factor” of the Lorentz transformation, s =

√
(1 + v)/(1− v) (in

units with c = 1), for v → +c and 1/s for v → −c. What about
intermediate cases, like v = c/2?

h / The match is lit inside the bell
jar. It burns, and energy escapes
from the jar in the form of light. Af-
ter it stops burning, all the same
atoms are still in the jar: none
have entered or escaped. The fig-
ure shows the outcome expected
before relativity, which was that
the mass measured on the bal-
ance would remain exactly the
same. This is not what happens
in reality.

When we are forced to tinker with a time-honored theory, our
first instinct should always be to tinker as conservatively as possible.
Although we’ve been forced to admit that kinetic energy doesn’t
vary as v2/2 at relativistic speeds, the next most conservative thing
we could do would be to assume that the only change necessary is to
replace the factor of v2/2 in the nonrelativistic expression for kinetic
energy with some other function, which would have to act like s or
1/s for v → ±c. I suspect that this is what Einstein thought when he
completed his original paper on relativity in 1905, because it wasn’t
until later that year that he published a second paper showing that
this still wasn’t enough of a change to produce a working theory. We
now know that there is something more that needs to be changed
about prerelativistic physics, and this is the assumption that mass is
only a property of material particles such as atoms (figure h). Call
this the “atoms-only hypothesis.”

Now that we know the correct relativistic way of finding the
energy of a ray of light, it turns out that we can use that to find
what we were originally seeking, which was the energy of a material
object. The following discussion closely follows Einstein’s.

Suppose that a material object O of mass m, initially at rest in
a certain frame A, emits two rays of light, each with energy E/2.
By conservation of energy, the object must have lost an amount of
energy equal to E. By symmetry, O remains at rest.

We now switch to a different frame of reference B moving at some
arbitrary speed corresponding to a stretch factor S. The change of
frames means that we’re chasing one ray, so that its energy is scaled
down to (E/2)S−1, while running away from the other, whose energy
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gets boosted to (E/2)S. In frame B, as in A, O retains the same
speed after emission of the light. But observers in frames A and B
disagree on how much energy O has lost, the discrepancy being

E

[
1

2
(S + S−1)− 1

]
.

Let’s consider the case where B’s velocity relative to A is small. For
small velocities, the stretch factor is S ≈ 1+v/c, and the discrepancy
in O’s energy loss is approximately

1

2
Ev2/c2 .

The interpretation is that when O reduced its energy by E in order
to make the light rays, it reduced its mass from mo to mo − m,
where m = E/c2. Rearranging factors, we have Einstein’s famous

E = mc2 .

We find that mass is not simply a built-in property of the parti-
cles that make up an object, with the object’s mass being the sum of
the masses of its particles. Rather, mass and energy are equivalent,
so that if the experiment of figure h is carried out with a sufficiently
precise balance, the reading will drop because of the mass equivalent
of the energy emitted as light.

The equation E = mc2 tells us how much energy is equivalent
to how much mass: the conversion factor is the square of the speed
of light, c. Since c a big number, you get a really really big number
when you multiply it by itself to get c2. This means that even
a small amount of mass is equivalent to a very large amount of
energy. Conversely, an ordinary amount of energy corresponds to
an extremely small mass, and this is why nobody detected the non-
null result of experiments like the one in figure h hundreds of years
ago.

The big event here is mass-energy equivalence, but we can also
harvest a result for the energy of a material particle moving at a
certain speed. Plugging in S =

√
(1 + v)/(1− v) to the equation

above for the energy discrepancy of object O between frames A and
B, we find m(γ − 1)c2. This is the difference between O’s energy in
frame B and its energy when it is at rest, but since mass and energy
are equivalent, we assign it energy mc2 when it is at rest. The result
is that the energy is

E = mγc2 .
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i / Top: A PET scanner. Mid-
dle: Each positron annihilates
with an electron, producing two
gamma-rays that fly off back-to-
back. When two gamma rays
are observed simultaneously in
the ring of detectors, they are
assumed to come from the same
annihilation event, and the point
at which they were emitted must
lie on the line connecting the
two detectors. Bottom: A scan
of a person’s torso. The body
has concentrated the radioactive
tracer around the stomach,
indicating an abnormal medical
condition.

Electron-positron annihilation example 3
Natural radioactivity in the earth produces positrons, which are
like electrons but have the opposite charge. A form of antimat-
ter, positrons annihilate with electrons to produce gamma rays, a
form of high-frequency light. Such a process would have been
considered impossible before Einstein, because conservation of
mass and energy were believed to be separate principles, and
this process eliminates 100% of the original mass. The amount
of energy produced by annihilating 1 kg of matter with 1 kg of
antimatter is

E = mc2

= (2 kg)
(

3.0× 108 m/s
)2

= 2× 1017 J ,

which is on the same order of magnitude as a day’s energy con-
sumption for the entire world’s population!

Positron annihilation forms the basis for the medical imaging tech-
nique called a PET (positron emission tomography) scan, in which
a positron-emitting chemical is injected into the patient and map-
ped by the emission of gamma rays from the parts of the body
where it accumulates.

A rusting nail example 4
. An iron nail is left in a cup of water until it turns entirely to rust.
The energy released is about 0.5 MJ. In theory, would a suffi-
ciently precise scale register a change in mass? If so, how much?

. The energy will appear as heat, which will be lost to the envi-
ronment. The total mass-energy of the cup, water, and iron will
indeed be lessened by 0.5 MJ. (If it had been perfectly insulated,
there would have been no change, since the heat energy would
have been trapped in the cup.) The speed of light is c = 3 × 108

meters per second, so converting to mass units, we have

m =
E
c2

=
0.5× 106 J(

3× 108 m/s
)2

= 6× 10−12 kilograms .

The change in mass is too small to measure with any practical
technique. This is because the square of the speed of light is
such a large number.

Gravity bending light example 5
Gravity is a universal attraction between things that have mass,
and since the energy in a beam of light is equivalent to a some
very small amount of mass, we expect that light will be affected
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j / A New York Times head-
line from November 10, 1919,
describing the observations
discussed in example 5.

by gravity, although the effect should be very small. The first im-
portant experimental confirmation of relativity came in 1919 when
stars next to the sun during a solar eclipse were observed to have
shifted a little from their ordinary position. (If there was no eclipse,
the glare of the sun would prevent the stars from being observed.)
Starlight had been deflected by the sun’s gravity. Figure k is a
photographic negative, so the circle that appears bright is actu-
ally the dark face of the moon, and the dark area is really the
bright corona of the sun. The stars, marked by lines above and
below then, appeared at positions slightly different than their nor-
mal ones.

k / Example 5.

Black holes example 6
A star with sufficiently strong gravity can prevent light from leav-
ing. Quite a few black holes have been detected via their gravita-
tional forces on neighboring stars or clouds of gas and dust.
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Summary
Selected vocabulary
potential energy the energy having to do with the distance be-

tween two objects that interact via a noncon-
tact force

Notation
PE . . . . . . . . . potential energy

Other terminology and notation
U or V . . . . . . symbols used for potential energy in the scien-

tific literature and in most advanced textbooks

Summary

Historically, the energy concept was only invented to include a
few phenomena, but it was later generalized more and more to apply
to new situations, for example nuclear reactions. This generalizing
process resulted in an undesirably long list of types of energy, each
of which apparently behaved according to its own rules.

The first step in simplifying the picture came with the realization
that heat was a form of random motion on the atomic level, i.e., heat
was nothing more than the kinetic energy of atoms.

A second and even greater simplification was achieved with the
realization that all the other apparently mysterious forms of energy
actually had to do with changing the distances between atoms (or
similar processes in nuclei). This type of energy, which relates to
the distance between objects that interact via a force, is therefore
of great importance. We call it potential energy.

Most of the important ideas about potential energy can be un-
derstood by studying the example of gravitational potential energy.
The change in an object’s gravitational potential energy is given by

∆PEgrav = −Fgrav∆y , [if Fgrav is constant, i.e., the

the motion is all near the Earth’s surface]

The most important thing to understand about potential energy
is that there is no unambiguous way to define it in an absolute sense.
The only thing that everyone can agree on is how much the potential
energy has changed from one moment in time to some later moment
in time.

An implication of Einstein’s theory of special relativity is that
mass and energy are equivalent, as expressed by the famous E =
mc2. The energy of a material object is given by E = mγc2.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A ball rolls up a ramp, turns around, and comes back down.
When does it have the greatest gravitational potential energy? The
greatest kinetic energy? [Based on a problem by Serway and Faughn.]

2 Anya and Ivan lean over a balcony side by side. Anya throws a
penny downward with an initial speed of 5 m/s. Ivan throws a penny
upward with the same speed. Both pennies end up on the ground
below. Compare their kinetic energies and velocities on impact.

3 Can gravitational potential energy ever be negative? Note
that the question refers to PE, not ∆PE, so that you must think
about how the choice of a reference level comes into play. [Based on
a problem by Serway and Faughn.]

4 (a) You release a magnet on a tabletop near a big piece of
iron, and the magnet slides across the table to the iron. Does the
magnetic potential energy increase, or decrease? Explain.
(b) Suppose instead that you have two repelling magnets. You give
them an initial push towards each other, so they decelerate while ap-
proaching each other. Does the magnetic potential energy increase
or decrease? Explain.

5 Let Eb be the energy required to boil one kg of water. (a) Find
an equation for the minimum height from which a bucket of water
must be dropped if the energy released on impact is to vaporize it.
Assume that all the heat goes into the water, not into the dirt it
strikes, and ignore the relatively small amount of energy required to
heat the water from room temperature to 100◦C. [Numerical check,
not for credit: Plugging in Eb = 2.3 MJ/kg should give a result of
230 km.]

√

(b) Show that the units of your answer in part a come out right
based on the units given for Eb.

6 A grasshopper with a mass of 110 mg falls from rest from a
height of 310 cm. On the way down, it dissipates 1.1 mJ of heat due
to air resistance. At what speed, in m/s, does it hit the ground?

. Solution, p. 520
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7 At a given temperature, the average kinetic energy per molecule
is a fixed value, so for instance in air, the more massive oxygen
molecules are moving more slowly on the average than the nitrogen
molecules. The ratio of the masses of oxygen and nitrogen molecules
is 16.00 to 14.01. Now suppose a vessel containing some air is sur-
rounded by a vacuum, and the vessel has a tiny hole in it, which
allows the air to slowly leak out. The molecules are bouncing around
randomly, so a given molecule will have to “try” many times before
it gets lucky enough to head out through the hole. Find the rate
at which oxygen leaks divided by the rate at which nitrogen leaks.
(Define this rate according to the fraction of the gas that leaks out
in a given time, not the mass or number of molecules leaked per unit
time.)

√

8 A person on a bicycle is to coast down a ramp of height h and
then pass through a circular loop of radius r. What is the small-
est value of h for which the cyclist will complete the loop without
falling? (Ignore the kinetic energy of the spinning wheels.)

√

9 Problem 9 has been deleted. ?

10 Students are often tempted to think of potential energy and
kinetic energy as if they were always related to each other, like
yin and yang. To show this is incorrect, give examples of physical
situations in which (a) PE is converted to another form of PE, and
(b) KE is converted to another form of KE. . Solution, p. 520

11 Lord Kelvin, a physicist, told the story of how he encountered
James Joule when Joule was on his honeymoon. As he traveled,
Joule would stop with his wife at various waterfalls, and measure
the difference in temperature between the top of the waterfall and
the still water at the bottom. (a) It would surprise most people
to learn that the temperature increased. Why should there be any
such effect, and why would Joule care? How would this relate to the
energy concept, of which he was the principal inventor? (b) How
much of a gain in temperature should there be between the top
and bottom of a 50-meter waterfall? (c) What assumptions did you
have to make in order to calculate your answer to part b? In reality,
would the temperature change be more than or less than what you
calculated? [Based on a problem by Arnold Arons.]

√

12 Make an order-of-magnitude estimate of the power repre-
sented by the loss of gravitational energy of the water going over
Niagara Falls. If the hydroelectric plant at the bottom of the falls
could convert 100% of this to electrical power, roughly how many
households could be powered? . Solution, p. 520
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Problem 16.

13 When you buy a helium-filled balloon, the seller has to inflate
it from a large metal cylinder of the compressed gas. The helium
inside the cylinder has energy, as can be demonstrated for example
by releasing a little of it into the air: you hear a hissing sound,
and that sound energy must have come from somewhere. The total
amount of energy in the cylinder is very large, and if the valve is
inadvertently damaged or broken off, the cylinder can behave like
bomb or a rocket.

Suppose the company that puts the gas in the cylinders prepares
cylinder A with half the normal amount of pure helium, and cylinder
B with the normal amount. Cylinder B has twice as much energy,
and yet the temperatures of both cylinders are the same. Explain, at
the atomic level, what form of energy is involved, and why cylinder
B has twice as much.

14 Explain in terms of conservation of energy why sweating
cools your body, even though the sweat is at the same temperature
as your body. Describe the forms of energy involved in this energy
transformation. Why don’t you get the same cooling effect if you
wipe the sweat off with a towel? Hint: The sweat is evaporating.

15 (a) A circular hoop of mass m and radius r spins like a wheel
while its center remains at rest. Let ω (Greek letter omega) be the
number of radians it covers per unit time, i.e., ω = 2π/T , where
the period, T , is the time for one revolution. Show that its kinetic
energy equals (1/2)mω2r2.
(b) Show that the answer to part a has the right units. (Note
that radians aren’t really units, since the definition of a radian is a
unitless ratio of two lengths.)
(c) If such a hoop rolls with its center moving at velocity v, its
kinetic energy equals (1/2)mv2, plus the amount of kinetic energy
found in part a. Show that a hoop rolls down an inclined plane with
half the acceleration that a frictionless sliding block would have.

?

16 A skateboarder starts at rest nearly at the top of a giant
cylinder, and begins rolling down its side. (If he started exactly at
rest and exactly at the top, he would never get going!) Show that his
board loses contact with the pipe after he has dropped by a height
equal to one third the radius of the pipe. . Solution, p. 520 ?

17 In example 6 on page 84, I remarked that accelerating a
macroscopic (i.e., not microscopic) object to close to the speed of
light would require an unreasonable amount of energy. Suppose that
the starship Enterprise from Star Trek has a mass of 8.0 × 107 kg,
about the same as the Queen Elizabeth 2. Compute the kinetic
energy it would have to have if it was moving at half the speed of
light. Compare with the total energy content of the world’s nuclear
arsenals, which is about 1021 J.

√
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18 (a) A free neutron (as opposed to a neutron bound into an
atomic nucleus) is unstable, and undergoes spontaneous radioactive
decay into a proton, an electron, and an antineutrino. The masses
of the particles involved are as follows:

neutron 1.67495× 10−27 kg
proton 1.67265× 10−27 kg
electron 0.00091× 10−27 kg
antineutrino < 10−35 kg

Find the energy released in the decay of a free neutron.
√

(b) Neutrons and protons make up essentially all of the mass of the
ordinary matter around us. We observe that the universe around us
has no free neutrons, but lots of free protons (the nuclei of hydrogen,
which is the element that 90% of the universe is made of). We find
neutrons only inside nuclei along with other neutrons and protons,
not on their own.

If there are processes that can convert neutrons into protons, we
might imagine that there could also be proton-to-neutron conver-
sions, and indeed such a process does occur sometimes in nuclei
that contain both neutrons and protons: a proton can decay into a
neutron, a positron, and a neutrino. A positron is a particle with
the same properties as an electron, except that its electrical charge
is positive. A neutrino, like an antineutrino, has negligible mass.

Although such a process can occur within a nucleus, explain why
it cannot happen to a free proton. (If it could, hydrogen would be
radioactive, and you wouldn’t exist!)

19 A little kid in my neighborhood came home from shopping
with his mother. They live on a hill, with their driveway oriented
perpendicular to the slope. Their minivan was parked in the drive-
way, and while she was bringing groceries inside, he unlocked the
parking brake and put the car in neutral. The steering wheel was
locked with the wheels banked. The car rolled downhill in a circular
arc with the driveway at its top, eventually crashing through the
wall of a neighbor’s living room. (Nobody was hurt.) Suppose the
neighbor’s house hadn’t intervened. The car just rolls freely, and we
want to know whether it will ever skid. Static friction acts between
the asphalt and the tires with coefficient µs, the radius of the circle
is r, the slope of the hill is θ, and the gravitational field has strength
g. Find the maximum value of θ such that the car will never skid.√

?
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Problem 20.

20 The figure shows two unequal masses, M and m, connected
by a string running over a pulley. This system was analyzed previ-
ously in problem 20 on p. 181, using Newton’s laws.
(a) Analyze the system using conservation of energy instead. Find
the speed the weights gain after being released from rest and trav-
eling a distance h.

√

(b) Use your result from part a to find the acceleration, reproducing
the result of the earlier problem.

√
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Chapter 13

Work: the transfer of
mechanical energy

13.1 Work: the transfer of mechanical energy
The concept of work

The mass contained in a closed system is a conserved quantity,
but if the system is not closed, we also have ways of measuring the
amount of mass that goes in or out. The water company does this
with a meter that records your water use.

Likewise, we often have a system that is not closed, and would
like to know how much energy comes in or out. Energy, however,
is not a physical substance like water, so energy transfer cannot
be measured with the same kind of meter. How can we tell, for
instance, how much useful energy a tractor can “put out” on one
tank of gas?

The law of conservation of energy guarantees that all the chem-
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a / Work is a transfer of en-
ergy.

b / The tractor raises the weight
over the pulley, increasing its
gravitational potential energy.

c / The tractor accelerates
the trailer, increasing its kinetic
energy.

d / The tractor pulls a plow.
Energy is expended in frictional
heating of the plow and the dirt,
and in breaking dirt clods and
lifting dirt up to the sides of the
furrow.

ical energy in the gasoline will reappear in some form, but not nec-
essarily in a form that is useful for doing farm work. Tractors, like
cars, are extremely inefficient, and typically 90% of the energy they
consume is converted directly into heat, which is carried away by
the exhaust and the air flowing over the radiator. We wish to dis-
tinguish the energy that comes out directly as heat from the energy
that serves to accelerate a trailer or to plow a field, so we define
a technical meaning of the ordinary word “work” to express the
distinction:

definition of work
Work is the amount of energy transferred into or out of a
system, not counting energy transferred by heat conduction.

self-check A
Based on this definition, is work a vector, or a scalar? What are its
units? . Answer, p. 526

The conduction of heat is to be distinguished from heating by
friction. When a hot potato heats up your hands by conduction, the
energy transfer occurs without any force, but when friction heats
your car’s brake shoes, there is a force involved. The transfer of en-
ergy with and without a force are measured by completely different
methods, so we wish to include heat transfer by frictional heating
under the definition of work, but not heat transfer by conduction.
The definition of work could thus be restated as the amount of en-
ergy transferred by forces.

Calculating work as force multiplied by distance

The examples in figures b-d show that there are many different
ways in which energy can be transferred. Even so, all these examples
have two things in common:

1. A force is involved.

2. The tractor travels some distance as it does the work.

In b, the increase in the height of the weight, ∆y, is the same as
the distance the tractor travels, which we’ll call d. For simplicity,
we discuss the case where the tractor raises the weight at constant
speed, so that there is no change in the kinetic energy of the weight,
and we assume that there is negligible friction in the pulley, so that
the force the tractor applies to the rope is the same as the rope’s
upward force on the weight. By Newton’s first law, these forces are
also of the same magnitude as the earth’s gravitational force on the
weight. The increase in the weight’s potential energy is given by
F∆y, so the work done by the tractor on the weight equals Fd, the
product of the force and the distance moved:

W = Fd .
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In example c, the tractor’s force on the trailer accelerates it, increas-
ing its kinetic energy. If frictional forces on the trailer are negligible,
then the increase in the trailer’s kinetic energy can be found using
the same algebra that was used on page 315 to find the potential
energy due to gravity. Just as in example b, we have

W = Fd .

Does this equation always give the right answer? Well, sort of.
In example d, there are two quantities of work you might want to
calculate: the work done by the tractor on the plow and the work
done by the plow on the dirt. These two quantities can’t both equal
Fd. Most of the energy transmitted through the cable goes into
frictional heating of the plow and the dirt. The work done by the
plow on the dirt is less than the work done by the tractor on the
plow, by an amount equal to the heat absorbed by the plow. It turns
out that the equation W = Fd gives the work done by the tractor,
not the work done by the plow. How are you supposed to know when
the equation will work and when it won’t? The somewhat complex
answer is postponed until section 13.6. Until then, we will restrict
ourselves to examples in which W = Fd gives the right answer;
essentially the reason the ambiguities come up is that when one
surface is slipping past another, d may be hard to define, because
the two surfaces move different distances.

e / The baseball pitcher put ki-
netic energy into the ball, so he
did work on it. To do the greatest
possible amount of work, he ap-
plied the greatest possible force
over the greatest possible dis-
tance.

We have also been using examples in which the force is in the
same direction as the motion, and the force is constant. (If the force
was not constant, we would have to represent it with a function, not
a symbol that stands for a number.) To summarize, we have:

rule for calculating work (simplest version)
The work done by a force can be calculated as

W = Fd ,

if the force is constant and in the same direction as the motion.
Some ambiguities are encountered in cases such as kinetic friction.
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f / Example 1.

Mechanical work done in an earthquake example 1
. In 1998, geologists discovered evidence for a big prehistoric
earthquake in Pasadena, between 10,000 and 15,000 years ago.
They found that the two sides of the fault moved 6.7 m relative
to one another, and estimated that the force between them was
1.3× 1017 N. How much energy was released?

. Multiplying the force by the distance gives 9× 1017 J. For com-
parison, the Northridge earthquake of 1994, which killed 57 peo-
ple and did 40 billion dollars of damage, released 22 times less
energy.

machines can increase force, but not work.

Figure g shows a pulley arrangement for doubling the force sup-
plied by the tractor (book 1, section 5.6). The tension in the left-
hand rope is equal throughout, assuming negligible friction, so there
are two forces pulling the pulley to the left, each equal to the origi-
nal force exerted by the tractor on the rope. This doubled force is
transmitted through the right-hand rope to the stump.

g / The pulley doubles the force
the tractor can exert on the
stump.

It might seem as though this arrangement would also double the
work done by the tractor, but look again. As the tractor moves
forward 2 meters, 1 meter of rope comes around the pulley, and the
pulley moves 1 m to the left. Although the pulley exerts double the
force on the stump, the pulley and stump only move half as far, so
the work done on the stump is no greater that it would have been
without the pulley.

The same is true for any mechanical arrangement that increases
or decreases force, such as the gears on a ten-speed bike. You can’t
get out more work than you put in, because that would violate
conservation of energy. If you shift gears so that your force on the
pedals is amplified, the result is that you just have to spin the pedals
more times.

No work is done without motion.

It strikes most students as nonsensical when they are told that
if they stand still and hold a heavy bag of cement, they are doing
no work on the bag. Even if it makes sense mathematically that
W = Fd gives zero when d is zero, it seems to violate common
sense. You would certainly become tired! The solution is simple.
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h / Whenever energy is trans-
ferred out of the spring, the same
amount has to be transferred into
the ball, and vice versa. As the
spring compresses, the ball is
doing positive work on the spring
(giving up its KE and transferring
energy into the spring as PE),
and as it decompresses the ball
is doing negative work (extracting
energy).

Physicists have taken over the common word “work” and given it a
new technical meaning, which is the transfer of energy. The energy
of the bag of cement is not changing, and that is what the physicist
means by saying no work is done on the bag.

There is a transformation of energy, but it is taking place entirely
within your own muscles, which are converting chemical energy into
heat. Physiologically, a human muscle is not like a tree limb, which
can support a weight indefinitely without the expenditure of energy.
Each muscle cell’s contraction is generated by zillions of little molec-
ular machines, which take turns supporting the tension. When a
particular molecule goes on or off duty, it moves, and since it moves
while exerting a force, it is doing work. There is work, but it is work
done by one molecule in a muscle cell on another.

Positive and negative work

When object A transfers energy to object B, we say that A does
positive work on B. B is said to do negative work on A. In other
words, a machine like a tractor is defined as doing positive work.
This use of the plus and minus signs relates in a logical and consis-
tent way to their use in indicating the directions of force and motion
in one dimension. In figure h, suppose we choose a coordinate sys-
tem with the x axis pointing to the right. Then the force the spring
exerts on the ball is always a positive number. The ball’s motion,
however, changes directions. The symbol d is really just a shorter
way of writing the familiar quantity ∆x, whose positive and negative
signs indicate direction.

While the ball is moving to the left, we use d < 0 to represent
its direction of motion, and the work done by the spring, Fd, comes
out negative. This indicates that the spring is taking kinetic energy
out of the ball, and accepting it in the form of its own potential
energy.

As the ball is reaccelerated to the right, it has d > 0, Fd is
positive, and the spring does positive work on the ball. Potential
energy is transferred out of the spring and deposited in the ball as
kinetic energy.

In summary:

rule for calculating work (including cases of negative
work)
The work done by a force can be calculated as

W = Fd ,

if the force is constant and along the same line as the motion.
The quantity d is to be interpreted as a synonym for ∆x, i.e.,
positive and negative signs are used to indicate the direction
of motion. Some ambiguities are encountered in cases such as
kinetic friction.
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i / Left: No mechanical work
occurs in the man’s body while
he holds himself motionless.
There is a transformation of
chemical energy into heat, but
this happens at the microscopic
level inside the tensed muscles.
Right: When the woman lifts
herself, her arms do positive
work on her body, transforming
chemical energy into gravitational
potential energy and heat. On the
way back down, the arms’ work
is negative; gravitational potential
energy is transformed into heat.
(In exercise physiology, the man
is said to be doing isometric
exercise, while the woman’s is
concentric and then concentric.)

j / Because the force is in
the opposite direction compared
to the motion, the brake shoe
does negative work on the drum,
i.e., accepts energy from it in the
form of heat.

self-check B
In figure h, what about the work done by the ball on the spring?
. Answer, p. 526

There are many examples where the transfer of energy out of an
object cancels out the transfer of energy in. When the tractor pulls
the plow with a rope, the rope does negative work on the tractor
and positive work on the plow. The total work done by the rope is
zero, which makes sense, since it is not changing its energy.

It may seem that when your arms do negative work by lowering
a bag of cement, the cement is not really transferring energy into
your body. If your body was storing potential energy like a com-
pressed spring, you would be able to raise and lower a weight all
day, recycling the same energy. The bag of cement does transfer
energy into your body, but your body accepts it as heat, not as po-
tential energy. The tension in the muscles that control the speed of
the motion also results in the conversion of chemical energy to heat,
for the same physiological reasons discussed previously in the case
where you just hold the bag still.

One of the advantages of electric cars over gasoline-powered cars
is that it is just as easy to put energy back in a battery as it is to
take energy out. When you step on the brakes in a gas car, the brake
shoes do negative work on the rest of the car. The kinetic energy of
the car is transmitted through the brakes and accepted by the brake
shoes in the form of heat. The energy cannot be recovered. Electric
cars, however, are designed to use regenerative braking. The brakes
don’t use friction at all. They are electrical, and when you step on
the brake, the negative work done by the brakes means they accept
the energy and put it in the battery for later use. This is one of the
reasons why an electric car is far better for the environment than a
gas car, even if the ultimate source of the electrical energy happens
to be the burning of oil in the electric company’s plant. The electric
car recycles the same energy over and over, and only dissipates heat
due to air friction and rolling resistance, not braking. (The electric
company’s power plant can also be fitted with expensive pollution-
reduction equipment that would be prohibitively expensive or bulky
for a passenger car.)
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l / A force can do positive,
negative, or zero work, depend-
ing on its direction relative to the
direction of the motion.

Discussion questions

A Besides the presence of a force, what other things differentiate the
processes of frictional heating and heat conduction?

B Criticize the following incorrect statement: “A force doesn’t do any
work unless it’s causing the object to move.”

C To stop your car, you must first have time to react, and then it takes
some time for the car to slow down. Both of these times contribute to the
distance you will travel before you can stop. The figure shows how the
average stopping distance increases with speed. Because the stopping
distance increases more and more rapidly as you go faster, the rule of
one car length per 10 m.p.h. of speed is not conservative enough at high
speeds. In terms of work and kinetic energy, what is the reason for the
more rapid increase at high speeds?

Discussion question C.

13.2 Work in three dimensions

A force perpendicular to the motion does no work.

Suppose work is being done to change an object’s kinetic energy.
A force in the same direction as its motion will speed it up, and a
force in the opposite direction will slow it down. As we have already
seen, this is described as doing positive work or doing negative work
on the object. All the examples discussed up until now have been
of motion in one dimension, but in three dimensions the force can
be at any angle θ with respect to the direction of motion.

What if the force is perpendicular to the direction of motion? We
have already seen that a force perpendicular to the motion results
in circular motion at constant speed. The kinetic energy does not
change, and we conclude that no work is done when the force is
perpendicular to the motion.

So far we have been reasoning about the case of a single force
acting on an object, and changing only its kinetic energy. The result
is more generally true, however. For instance, imagine a hockey puck
sliding across the ice. The ice makes an upward normal force, but
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m / Work is only done by the
component of the force parallel to
the motion.

n / Self-check. (Breaking Trail, by
Walter E. Bohl.)

does not transfer energy to or from the puck.

Forces at other angles

Suppose the force is at some other angle with respect to the
motion, say θ = 45◦. Such a force could be broken down into two
components, one along the direction of the motion and the other
perpendicular to it. The force vector equals the vector sum of its
two components, and the principle of vector addition of forces thus
tells us that the work done by the total force cannot be any different
than the sum of the works that would be done by the two forces by
themselves. Since the component perpendicular to the motion does
no work, the work done by the force must be

W = F‖|d| , [work done by a constant force]

where the vector d is simply a less cumbersome version of the nota-
tion ∆r. This result can be rewritten via trigonometry as

W = |F||d| cos θ . [work done by a constant force]

Even though this equation has vectors in it, it depends only on
their magnitudes, and the magnitude of a vector is a scalar. Work
is therefore still a scalar quantity, which only makes sense if it is
defined as the transfer of energy. Ten gallons of gasoline have the
ability to do a certain amount of mechanical work, and when you
pull in to a full-service gas station you don’t have to say “Fill ’er up
with 10 gallons of south-going gas.”

Students often wonder why this equation involves a cosine rather
than a sine, or ask if it would ever be a sine. In vector addition, the
treatment of sines and cosines seemed more equal and democratic,
so why is the cosine so special now? The answer is that if we are
going to describe, say, a velocity vector, we must give both the
component parallel to the x axis and the component perpendicular
to the x axis (i.e., the y component). In calculating work, however,
the force component perpendicular to the motion is irrelevant — it
changes the direction of motion without increasing or decreasing the
energy of the object on which it acts. In this context, it is only the
parallel force component that matters, so only the cosine occurs.

self-check C
(a) Work is the transfer of energy. According to this definition, is the
horse in the picture doing work on the pack? (b) If you calculate work
by the method described in this section, is the horse in figure n doing
work on the pack? . Answer, p. 526

Pushing a broom example 2
. If you exert a force of 21 N on a push broom, at an angle 35
degrees below horizontal, and walk for 5.0 m, how much work do
you do? What is the physical significance of this quantity of work?

. Using the second equation above, the work done equals

(21 N)(5.0 m)(cos 35◦) = 86 J .
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The form of energy being transferred is heat in the floor and the
broom’s bristles. This comes from the chemical energy stored in
your body. (The majority of the calories you burn are dissipated
directly as heat inside your body rather than doing any work on
the broom. The 86 J is only the amount of energy transferred
through the broom’s handle.)

A violin example 3
As a violinist draws the bow across a string, the bow hairs exert
both a normal force and a kinetic frictional force on the string. The
normal force is perpendicular to the direction of motion, and does
no work. However, the frictional force is in the same direction as
the motion of the bow, so it does work: energy is transferred to
the string, causing it to vibrate.

One way of playing a violin more loudly is to use longer strokes.
Since W = Fd , the greater distance results in more work.

A second way of getting a louder sound is to press the bow more
firmly against the strings. This increases the normal force, and
although the normal force itself does no work, an increase in the
normal force has the side effect of increasing the frictional force,
thereby increasing W = Fd .

The violinist moves the bow back and forth, and sound is pro-
duced on both the “up-bow” (the stroke toward the player’s left)
and the “down-bow” (to the right). One may, for example, play a
series of notes in alternation between up-bows and down-bows.
However, if the notes are of unequal length, the up and down mo-
tions tend to be unequal, and if the player is not careful, she can
run out of bow in the middle of a note! To keep this from hap-
pening, one can move the bow more quickly on the shorter notes,
but the resulting increase in d will make the shorter notes louder
than they should be. A skilled player compensates by reducing
the force.

13.3 The dot product
Up until now, we have not found any physically useful way to define
the multiplication of two vectors. It would be possible, for instance,
to multiply two vectors component by component to form a third
vector, but there are no physical situations where such a multipli-
cation would be useful.

The equation W = |F||d| cos θ is an example of a sort of mul-
tiplication of vectors that is useful. The result is a scalar, not a
vector, and this is therefore often referred to as the scalar product
of the vectors F and d. There is a standard shorthand notation for
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this operation,

A ·B = |A||B| cos θ , [definition of the notation A ·B;

θ is the angle between vectors A and B]

and because of this notation, a more common term for this operation
is the dot product. In dot product notation, the equation for work
is simply

W = F · d .

The dot product has the following geometric interpretation:

A ·B = |A|(component of B parallel to A)

= |B|(component of A parallel to B)

The dot product has some of the properties possessed by ordinary
multiplication of numbers,

A ·B = B ·A
A · (B + C) = A ·B + A ·C

(cA) ·B = c (A ·B) ,

but it lacks one other: the ability to undo multiplication by dividing.

If you know the components of two vectors, you can easily cal-
culate their dot product as follows:

A ·B = AxBx +AyBy +AzBz .

(This can be proved by first analyzing the special case where each
vector has only an x component, and the similar cases for y and z.
We can then use the rule A · (B + C) = A · B + A · C to make a
generalization by writing each vector as the sum of its x, y, and z
components. See homework problem 23.)

Magnitude expressed with a dot product example 4
If we take the dot product of any vector b with itself, we find

b · b =
(
bx x̂ + by ŷ + bz ẑ

)
·
(
bx x̂ + by ŷ + bz ẑ

)
= b2

x + b2
y + b2

z ,

so its magnitude can be expressed as

|b| =
√

b · b .

We will often write b2 to mean b · b, when the context makes
it clear what is intended. For example, we could express kinetic
energy as (1/2)m|v|2, (1/2)mv·v, or (1/2)mv2. In the third version,
nothing but context tells us that v really stands for the magnitude
of some vector v.
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o / The spring does work on
the cart. (Unlike the ball in
section 13.1, the cart is attached
to the spring.)

Towing a barge example 5
. A mule pulls a barge with a force F=(1100 N)x̂ + (400 N)ŷ, and
the total distance it travels is (1000 m)x̂. How much work does it
do?

. The dot product is 1.1× 106 N·m = 1.1× 106 J.

13.4 Varying force
Up until now we have done no actual calculations of work in cases
where the force was not constant. The question of how to treat
such cases is mathematically analogous to the issue of how to gener-
alize the equation (distance) = (velocity)(time) to cases where the
velocity was not constant. We have to make the equation into an
integral:

W =

∫
Fdx

The examples in this section are ones in which the force is varying,
but is always along the same line as the motion.

self-check D
In which of the following examples would it be OK to calculate work
using Fd , and in which ones would you have to integrate?

(a) A fishing boat cruises with a net dragging behind it.

(b) A magnet leaps onto a refrigerator from a distance.

(c) Earth’s gravity does work on an outward-bound space probe. .

Answer, p. 526

Work done by a spring example 6
An important and straightforward example is the calculation of the
work done by a spring that obeys Hooke’s law,

F ≈ −k (x − xo) ,

where xo is the equilibrium position and the minus sign is because
this is the force being exerted by the spring, not the force that
would have to act on the spring to keep it at this position. That is,
if the position of the cart in figure o is to the right of equilibrium,
the spring pulls back to the left, and vice-versa. Integrating, we
find that the work done between x1 and x2 is

W = −1
2

k (x − xo)2
∣∣∣∣x2

x1

.

Work done by gravity example 7
Another important example is the work done by gravity when the
change in height is not small enough to assume a constant force.
Newton’s law of gravity is

F =
GMm

r2 ,
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which can be integrated to give

W =
∫ r2

r1

GMm
r2 dr

= GMm
(

1
r2
− 1

r1

)
.

13.5 Work and potential energy
The techniques for calculating work can also be applied to the cal-
culation of potential energy. If a certain force depends only on
the distance between the two participating objects, then the energy
released by changing the distance between them is defined as the po-
tential energy, and the amount of potential energy lost equals minus
the work done by the force,

∆PE = −W .

The minus sign occurs because positive work indicates that the po-
tential energy is being expended and converted to some other form.

It is sometimes convenient to pick some arbitrary position as a
reference position, and derive an equation for once and for all that
gives the potential energy relative to this position

PEx = −Wref→x . [potential energy at a point x]

To find the energy transferred into or out of potential energy, one
then subtracts two different values of this equation.

These equations might almost make it look as though work and
energy were the same thing, but they are not. First, potential energy
measures the energy that a system has stored in it, while work
measures how much energy is transferred in or out. Second, the
techniques for calculating work can be used to find the amount of
energy transferred in many situations where there is no potential
energy involved, as when we calculate the amount of kinetic energy
transformed into heat by a car’s brake shoes.

A toy gun example 8
. A toy gun uses a spring with a spring constant of 10 N/m to
shoot a ping-pong ball of mass 5 g. The spring is compressed to
10 cm shorter than its equilibrium length when the gun is loaded.
At what speed is the ball released?

. The equilibrium point is the natural choice for a reference point.
Using the equation found previously for the work, we have

PEx =
1
2

k (x − xo)2 .
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The spring loses contact with the ball at the equilibrium point, so
the final potential energy is

PEf = 0 .

The initial potential energy is

PEi =
1
2

(10 N/m)(0.10 m)2 .

= 0.05 J.

The loss in potential energy of 0.05 J means an increase in kinetic
energy of the same amount. The velocity of the ball is found by
solving the equation K E = (1/2)mv2 for v ,

v =

√
2K E

m

=

√
(2)(0.05 J)
0.005 kg

= 4 m/s .

Gravitational potential energy example 9
. We have already found the equation ∆PE = −F∆y for the

gravitational potential energy when the change in height is not
enough to cause a significant change in the gravitational force F .
What if the change in height is enough so that this assumption
is no longer valid? Use the equation W = GMm(1/r2 − 1/r1)
derived in example 7 to find the potential energy, using r = ∞ as
a reference point.

. The potential energy equals minus the work that would have to
be done to bring the object from r1 =∞ to r = r2, which is

PE = −GMm
r

.

This is simpler than the equation for the work, which is an exam-
ple of why it is advantageous to record an equation for potential
energy relative to some reference point, rather than an equation
for work.

Although the equations derived in the previous two examples
may seem arcane and not particularly useful except for toy design-
ers and rocket scientists, their usefulness is actually greater than
it appears. The equation for the potential energy of a spring can
be adapted to any other case in which an object is compressed,
stretched, twisted, or bent. While you are not likely to use the
equation for gravitational potential energy for anything practical, it
is directly analogous to an equation that is extremely useful in chem-
istry, which is the equation for the potential energy of an electron
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at a distance r from the nucleus of its atom. As discussed in more
detail later in the course, the electrical force between the electron
and the nucleus is proportional to 1/r2, just like the gravitational
force between two masses. Since the equation for the force is of the
same form, so is the equation for the potential energy.

p / The twin Voyager space
probes were perhaps the great-
est scientific successes of the
space program. Over a period
of decades, they flew by all the
planets of the outer solar system,
probably accomplishing more
of scientific interest than the
entire space shuttle program at
a tiny fraction of the cost. Both
Voyager probes completed their
final planetary flybys with speeds
greater than the escape velocity
at that distance from the sun, and
so headed on out of the solar sys-
tem on hyperbolic orbits, never
to return. Radio contact has
been lost, and they are now likely
to travel interstellar space for
billions of years without colliding
with anything or being detected
by any intelligent species.

Discussion questions

A What does the graph of PE = (1/2)k (x − xo)2 look like as a function
of x? Discuss the physical significance of its features.

B What does the graph of PE = −GMm/r look like as a function of r?
Discuss the physical significance of its features. How would the equation
and graph change if some other reference point was chosen rather than
r =∞?

C Starting at a distance r from a planet of mass M, how fast must an
object be moving in order to have a hyperbolic orbit, i.e., one that never
comes back to the planet? This velocity is called the escape velocity. In-
terpreting the result, does it matter in what direction the velocity is? Does
it matter what mass the object has? Does the object escape because it is
moving too fast for gravity to act on it?

D Does a spring have an “escape velocity?”

E If the form of energy being transferred is potential energy, then
the equations F = dW/dx and W =

∫
Fdx become F = −dPE/dx and

PE = −
∫

Fdx . How would you then apply the following calculus con-
cepts: zero derivative at minima and maxima, and the second derivative
test for concavity up or down.
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13.6 ? When does work equal force times
distance?

In the example of the tractor pulling the plow discussed on page
333, the work did not equal Fd. The purpose of this section is to
explain more fully how the quantity Fd can and cannot be used.
To simplify things, I write Fd throughout this section, but more
generally everything said here would be true for the area under the
graph of F‖ versus d.

The following two theorems allow most of the ambiguity to be
cleared up.

the work-kinetic-energy theorem
The change in kinetic energy associated with the motion of an
object’s center of mass is related to the total force acting on
it and to the distance traveled by its center of mass according
to the equation ∆KEcm = Ftotaldcm.

This can be proved based on Newton’s second law and the equa-
tion KE = (1/2)mv2. Note that despite the traditional name, it
does not necessarily tell the amount of work done, since the forces
acting on the object could be changing other types of energy besides
the KE associated with its center of mass motion.

The second theorem does relate directly to work:

When a contact force acts between two objects and the two
surfaces do not slip past each other, the work done equals Fd,
where d is the distance traveled by the point of contact.

This one has no generally accepted name, so we refer to it simply
as the second theorem.

A great number of physical situations can be analyzed with these
two theorems, and often it is advantageous to apply both of them
to the same situation.

An ice skater pushing off from a wall example 10
The work-kinetic energy theorem tells us how to calculate the
skater’s kinetic energy if we know the amount of force and the
distance her center of mass travels while she is pushing off.

The second theorem tells us that the wall does no work on the
skater. This makes sense, since the wall does not have any
source of energy.

Absorbing an impact without recoiling? example 11
. Is it possible to absorb an impact without recoiling? For in-
stance, would a brick wall “give” at all if hit by a ping-pong ball?

. There will always be a recoil. In the example proposed, the wall
will surely have some energy transferred to it in the form of heat
and vibration. The second theorem tells us that we can only have
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nonzero work if the distance traveled by the point of contact is
nonzero.

Dragging a refrigerator at constant velocity example 12
Newton’s first law tells us that the total force on the refrigerator
must be zero: your force is canceling the floor’s kinetic frictional
force. The work-kinetic energy theorem is therefore true but use-
less. It tells us that there is zero total force on the refrigerator,
and that the refrigerator’s kinetic energy doesn’t change.

The second theorem tells us that the work you do equals your
hand’s force on the refrigerator multiplied by the distance traveled.
Since we know the floor has no source of energy, the only way for
the floor and refrigerator to gain energy is from the work you do.
We can thus calculate the total heat dissipated by friction in the
refrigerator and the floor.

Note that there is no way to find how much of the heat is dissi-
pated in the floor and how much in the refrigerator.

Accelerating a cart example 13
If you push on a cart and accelerate it, there are two forces acting
on the cart: your hand’s force, and the static frictional force of the
ground pushing on the wheels in the opposite direction.

Applying the second theorem to your force tells us how to calcu-
late the work you do.

Applying the second theorem to the floor’s force tells us that the
floor does no work on the cart. There is no motion at the point
of contact, because the atoms in the floor are not moving. (The
atoms in the surface of the wheel are also momentarily at rest
when they touch the floor.) This makes sense, since the floor
does not have any source of energy.

The work-kinetic energy theorem refers to the total force, and be-
cause the floor’s backward force cancels part of your force, the
total force is less than your force. This tells us that only part of
your work goes into the kinetic energy associated with the forward
motion of the cart’s center of mass. The rest goes into rotation of
the wheels.

13.7 ? Uniqueness of the dot product
In this section I prove that the vector dot product is unique, in
the sense that there is no other possible way to define it that is
consistent with rotational invariance and that reduces appropriately
to ordinary multiplication in one dimension.

Suppose we want to find some way to multiply two vectors to get
a scalar, and we don’t know how this operation should be defined.
Let’s consider what we would get by performing this operation on
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various combinations of the unit vectors x̂, ŷ, and ẑ. Rotational
invariance requires that we handle the three coordinate axes in the
same way, without giving special treatment to any of them, so we
must have x̂ · x̂ = ŷ · ŷ = ẑ · ẑ and x̂ · ŷ = ŷ · ẑ = ẑ · x̂. This is
supposed to be a way of generalizing ordinary multiplication, so for
consistency with the property 1 × 1 = 1 of ordinary numbers, the
result of multiplying a magnitude-one vector by itself had better be
the scalar 1, so x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1. Furthermore, there is no way
to satisfy rotational invariance unless we define the mixed products
to be zero, x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0; for example, a 90-degree rotation
of our frame of reference about the z axis reverses the sign of x̂ · ŷ,
but rotational invariance requires that x̂ · ŷ produce the same result
either way, and zero is the only number that stays the same when
we reverse its sign. Establishing these six products of unit vectors
suffices to define the operation in general, since any two vectors
that we want to multiply can be broken down into components, e.g.,
(2x̂+3ẑ) · ẑ = 2x̂ · ẑ+3ẑ · ẑ = 0+3 = 3. Thus by requiring rotational
invariance and consistency with multiplication of ordinary numbers,
we find that there is only one possible way to define a multiplication
operation on two vectors that gives a scalar as the result. (There
is, however, a different operation, discussed in chapter 15, which
multiplies two vectors to give a vector.)

13.8 ? A dot product for relativity?
In section 13.7 I showed that the dot product is the only physi-
cally sensible way to multiply two vectors to get a scalar. This is
essentially because the outcome of experiments shouldn’t depend
on which way we rotate the laboratory. Dot products relate to the
lengths of vectors and the angles between them, and rotations don’t
change lengths or angles.

Let’s consider how this would apply to relativity. Relativity
tells us that the length of a measuring rod is not absolute. Rotating
the lab won’t change its length, but changing the lab’s state of
motion will. The rod’s length is greatest in the frame that is at
rest relative to the rod. This suggests that relativity requires some
new variation on the dot product: some slightly different way of
multiplying two vectors to find a number that doesn’t depend on
the frame of reference.

Clock time

We do know of a number that stays the same in all frames of ref-
erence. On p. 89 we proved that the Lorentz transformation doesn’t
change the area of a shape in the x-t plane. We used this only as a
stepping stone toward the Lorentz transformation, but it is natural
to wonder whether this kind of area has any physical interest of its
own.
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The equal-area result is not relativistic, since the proof never
appeals to property 5 on page 79. Cases I and II on page 81 also
have the equal-area property. We can see this clearly in a Galilean
transformation like figure af on p. 79, where the distortion of the
rectangle could be accomplished by cutting it into vertical slices and
then displacing the slices upward without changing their areas.

But the area does have a nice interpretation in the relativistic
case. Suppose that we have events A (Charles VII is restored to
the throne) and B (Joan of Arc is executed). Now imagine that
technologically advanced aliens want to be present at both A and
B, but in the interim they wish to fly away in their spaceship, be
present at some other event P (perhaps a news conference at which
they give an update on the events taking place on earth), but get
back in time for B. Since nothing can go faster than c (which we
take to equal 1 in appropriate units), P cannot be too far away. The
set of all possible events P forms a rectangle, figure q/1, in the x− t
plane that has A and B at opposite corners and whose edges have
slopes equal to ±1. We call this type of rectangle a light-rectangle,
because its sides could represent the motion of rays of light.

q / 1. The gray light-rectangle rep-
resents the set of all events such
as P that could be visited after A
and before B.
2. The rectangle becomes a
square in the frame in which A
and B occur at the same location
in space.
3. The area of the dashed square
is τ2, so the area of the gray
square is τ2/2. The area of this rectangle will be the same regardless of one’s

frame of reference. In particular, we could choose a special frame
of reference, panel 2 of the figure, such that A and B occur in the
same place. (They do not occur at the same place, for example,
in the sun’s frame, because the earth is spinning and going around
the sun.) Since the speed c, which equals 1 in our units, is the
same in all frames of reference, and the sides of the rectangle had
slopes ±1 in frame 1, they must still have slopes ±1 in frame 2. The
rectangle becomes a square with its diagonals parallel to the x and
t axes, and the length of these diagonals equals the time τ elapsed
on a clock that is at rest in frame 2, i.e., a clock that glides through
space at constant velocity from A to B, meeting up with the planet
earth at the appointed time. As shown in panel 3 of the figure, the
area of the gray regions can be interpreted as half the square of this
gliding-clock time.

If events A and B are separated by a distance x and a time t,
then in general t2 − x2 gives the square of the gliding-clock time.
Proof: Based on units, the expression must have the form (. . .)t2 +
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(. . .)tx+(. . .)x2, where each (. . .) represents a unitless constant. The
tx coefficient must be zero by property 2 on p. 79. For consistency
with figure q/3, the t2 coefficient must equal 1. Since the area
vanishes for x = t, the x2 coefficient must equal −1.

When |x| is greater than |t|, events A and are so far apart in
space and so close together in time that it would be impossible to
have a cause and effect relationship between them, since c = 1 is
the maximum speed of cause and effect. In this situation t2 − x2

is negative and cannot be interpreted as a clock time, but it can
be interpreted as minus the square of the distance bewteen A and
B as measured by rulers at rest in a frame in which A and B are
simultaneous.

Four-vectors

No matter what, t2 − x2 is the same as measured in all frames
of reference. Geometrically, it plays the same role in the x-t plane
that ruler measurements play in the Euclidean plane. In Euclidean
geometry, the ruler-distance between any two points stays the same
regardless of rotation, i.e., regardless of the angle from which we
view the scene; according to the Pythagorean theorem, the square
of this distance is x2 + y2. In the x-t plane, t2 − x2 stays the same
regardless of the frame of reference. This suggests that by analogy
with the dot product

x1x2 + y1y2

in the Euclidean x-y plane, we define a similar operation in the x-t
plane,

t1t2 − x1x2 .

Putting in the other two spatial dimensions, we have

t1t2 − x1x2 − y1y2 − z1z2 .

A mathematical object like (t,x, y, z) is referred to as a four-vector,
as opposed to a three-vector like (x, y, z). The term “dot product”
has connotations of referring only to three-vectors, so the operation
of taking the scalar product of two four-vectors is usually referred to
instead as the “inner product.” There are various ways of notating
the inner product of vectors a and b, such as a · b or < a, b >.

The magnitude of a three-vector is defined by taking the square
root of its dot product with itself, and this square root is always
a real number, because a vector’s dot product with itself is always
positive. But the inner product of a four-vector with itself can be
positive, zero, or negative, and in these cases the vector is referred to
as timelike, lightlike, spacelike, respectively. Since material objects
can never go as fast as c, the vector (∆t, ∆x, ∆y, ∆z) describing an
object’s motion from one event to another is always timelike.

The twin paradox example 14
One of the classic paradoxes of relativity, known as the twin para-
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dox, is usually stated something like this. Alice and Betty are iden-
tical twins. Betty goes on a space voyage at relativistic speeds,
traveling away from the earth and then turning around and com-
ing back. Meanwhile, Alice stays on earth. When Betty returns,
she is younger than Alice because of relativistic time dilation. But
isn’t it valid to say that Betty’s spaceship is standing still and the
earth moving? In that description, wouldn’t Alice end up younger
and Betty older?

The most common way of explaining the non-paradoxical nature
of this paradox is that although special relativity says that inertial
motion is relative, it doesn’t say that noninertial motion is relative.
In this respect it is the same as Newtonian mechanics. Betty ex-
periences accelerations on her voyage, but Alice doesn’t. There-
fore there is no doubt about who actually went on the trip and who
didn’t.

This resolution, however, may not be entirely satisfying because it
makes it sound as if relativistic time dilation is not occurring while
Betty’s ship cruises at constant velocity, but only while the ship is
speeding up or slowing down. This would appear to contradict our
earlier interpretation of relativistic time dilation, which was that
a clock runs fastest according to an observer at rest relative to
the clock. Furthermore, if it’s acceleration that causes the effect,
should we be looking for some new formula that computes time
dilation based on acceleration?

The first thing to realize is that there is no unambiguous way to
decide during which part of Betty’s journey the time dilation is oc-
curring. To do this, we could need to be able to compare Alice and
Betty’s clocks many times over the course of the trip. But each
twin has no way of finding out what her sister’s clock reads “now,”
except by exchanging radio signals, which travel at the speed of
light. The speed-of-light lag vanishes only at the beginning and
end of the trip, when the twins are in the same place.

Furthermore, we can use the inner product to show that the ac-
cumulated difference in clock time doesn’t depend on the details
of how Betty carries out her accelerations and decelerations. In
fact, we can get the right answer simply by assuming that these
changes in velocities occur instantaneously.

In Euclidean geometry, the triangle inequality |b + c| < |b| + |c|
follows from

(|b| + |c|)2 − (b + c) · (b + c) = 2(|b||c| − b · c) ≥ 0 .

The reason this quantity always comes out positive is that for two
vectors of fixed magnitude, the greatest dot product is always
achieved in the case where they lie along the same direction.

In the geometry of the x-t plane, the situation is different. Sup-
pose that b and c are timelike vectors, so that they represent
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possible (∆t ,∆x , . . .) vectors for Betty on the outward and return
legs of her trip. Then a = b+c describes the vector for Alice’s mo-
tion. Alice goes by a direct route through the x-t plane while Betty
takes a detour. The magnitude of each timelike vector represents
the time elapsed on a clock carried by that twin. The triangle
equality is now reversed, becoming |b + c| > |b| + |c|. The differ-
ence from the Euclidean case arises because inner products are
no longer necessarily maximized if vectors are in the same direc-
tion. E.g., for two lightlike vectors, b · c vanishes entirely if b and
c are parallel. For timelike vectors, parallelism actually minimizes
the inner product rather than maximizing it.1

1Proof: Let b and c be parallel and timelike, and directed forward in time.
Adopt a frame of reference in which every spatial component of each vector
vanishes. This entails no loss of generality, since inner products are invariant
under such a transformation. Now let b and c be pulled away from parallelism,
like opening a pair of scissors in the x− t plane. This reduces btct , while causing
bx cx to become negative. Both effects increase the inner product.
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Summary
Selected vocabulary
work . . . . . . . . the amount of energy transferred into or out

of a system, excluding energy transferred by
heat conduction

Notation
W . . . . . . . . . work

Summary

Work is a measure of the transfer of mechanical energy, i.e., the
transfer of energy by a force rather than by heat conduction. When
the force is constant, work can usually be calculated as

W = F‖|d| , [only if the force is constant]

where d is simply a less cumbersome notation for ∆r, the vector
from the initial position to the final position. Thus,

• A force in the same direction as the motion does positive work,
i.e., transfers energy into the object on which it acts.

• A force in the opposite direction compared to the motion does
negative work, i.e., transfers energy out of the object on which
it acts.

• When there is no motion, no mechanical work is done. The
human body burns calories when it exerts a force without
moving, but this is an internal energy transfer of energy within
the body, and thus does not fall within the scientific definition
of work.

• A force perpendicular to the motion does no work.

When the force is not constant, the above equation should be gen-
eralized as an integral,

∫
F‖ dx.

There is only one meaningful (rotationally invariant) way of
defining a multiplication of vectors whose result is a scalar, and
it is known as the vector dot product:

b · c = bxcx + bycy + bzcz

= |b| |c| cos θbc .

The dot product has most of the usual properties associated with
multiplication, except that there is no “dot division.” The dot prod-
uct can be used to compute mechanical work as W = F · d.

Machines such as pulleys, levers, and gears may increase or de-
crease a force, but they can never increase or decrease the amount
of work done. That would violate conservation of energy unless the
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machine had some source of stored energy or some way to accept
and store up energy.

There are some situations in which the equation W = F‖ |d| is
ambiguous or not true, and these issues are discussed rigorously in
section 13.6. However, problems can usually be avoided by analyzing
the types of energy being transferred before plunging into the math.
In any case there is no substitute for a physical understanding of
the processes involved.

The techniques developed for calculating work can also be ap-
plied to the calculation of potential energy. We fix some position
as a reference position, and calculate the potential energy for some
other position, x, as

PEx = −Wref→x .

The following two equations for potential energy have broader
significance than might be suspected based on the limited situations
in which they were derived:

PE =
1

2
k (x− xo)2 .

[potential energy of a spring having spring constant
k, when stretched or compressed from the equilibrium
position xo; analogous equations apply for the twisting,
bending, compression, or stretching of any object.]

PE = −GMm

r

[gravitational potential energy of objects of masses M
and m, separated by a distance r; an analogous equation
applies to the electrical potential energy of an electron
in an atom.]
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Two speedboats are identical, but one has more people aboard
than the other. Although the total masses of the two boats are
unequal, suppose that they happen to have the same kinetic energy.
In a boat, as in a car, it’s important to be able to stop in time to
avoid hitting things. (a) If the frictional force from the water is the
same in both cases, how will the boats’ stopping distances compare?
Explain. (b) Compare the times required for the boats to stop.

2 In each of the following situations, is the work being done
positive, negative, or zero? (a) a bull paws the ground; (b) a fishing
boat pulls a net through the water behind it; (c) the water resists
the motion of the net through it; (d) you stand behind a pickup
truck and lower a bale of hay from the truck’s bed to the ground.
Explain. [Based on a problem by Serway and Faughn.]

3 (a) Suppose work is done in one-dimensional motion. What
happens to the work if you reverse the direction of the positive
coordinate axis? Base your answer directly on the definition of work.
(b) Now answer the question based on the W = Fd rule.

4 Does it make sense to say that work is conserved?
. Solution, p. 521

5 A microwave oven works by twisting molecules one way and
then the other, counterclockwise and then clockwise about their own
centers, millions of times a second. If you put an ice cube or a stick
of butter in a microwave, you’ll observe that the oven doesn’t heat
the solid very quickly, although eventually melting begins in one
small spot. Once a melted spot forms, it grows rapidly, while the
rest of the solid remains solid. In other words, it appears based on
this experiment that a microwave oven heats a liquid much more
rapidly than a solid. Explain why this should happen, based on the
atomic-level description of heat, solids, and liquids. (See, e.g., figure
b on page 313.)

Please don’t repeat the following common mistakes in your expla-
nation:

In a solid, the atoms are packed more tightly and have less
space between them. Not true. Ice floats because it’s less
dense than water.

In a liquid, the atoms are moving much faster. No, the differ-
ence in average speed between ice at −1◦C and water at 1◦C
is only 0.4%.
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Problem 6.

Problem 7: A cylinder from
the 1965 Rambler’s engine. The
piston is shown in its pushed out
position. The two bulges at the
top are for the valves that let fresh
air-gas mixture in. Based on a
figure from Motor Service’s Au-
tomotive Encyclopedia, Toboldt
and Purvis.

6 Most modern bow hunters in the U.S. use a fancy mechanical
bow called a compound bow, which looks nothing like what most
people imagine when they think of a bow and arrow. It has a system
of pulleys designed to produce the force curve shown in the figure,
where F is the force required to pull the string back, and x is the
distance between the string and the center of the bow’s body. It is
not a linear Hooke’s-law graph, as it would be for an old-fashioned
bow. The big advantage of the design is that relatively little force
is required to hold the bow stretched to point B on the graph. This
is the force required from the hunter in order to hold the bow ready
while waiting for a shot. Since it may be necessary to wait a long
time, this force can’t be too big. An old-fashioned bow, designed
to require the same amount of force when fully drawn, would shoot
arrows at much lower speeds, since its graph would be a straight line
from A to B. For the graph shown in the figure (taken from realistic
data), find the speed at which a 26 g arrow is released, assuming that
70% of the mechanical work done by the hand is actually transmitted
to the arrow. (The other 30% is lost to frictional heating inside the
bow and kinetic energy of the recoiling and vibrating bow.)

√

7 In the power stroke of a car’s gasoline engine, the fuel-air
mixture is ignited by the spark plug, explodes, and pushes the piston
out. The exploding mixture’s force on the piston head is greatest
at the beginning of the explosion, and decreases as the mixture
expands. It can be approximated by F = a/x, where x is the
distance from the cylinder to the piston head, and a is a constant
with units of N ·m. (Actually a/x1.4 would be more accurate, but
the problem works out more nicely with a/x!) The piston begins its
stroke at x = x1, and ends at x = x2.
(a) Find the amount of work done in one stroke by one cylinder.

√

(b) The 1965 Rambler had six cylinders, each with a = 220 N ·m,
x1 = 1.2 cm, and x2 = 10.2 cm. Assume the engine is running at
4800 r.p.m., so that during one minute, each of the six cylinders
performs 2400 power strokes. (Power strokes only happen every
other revolution.) Find the engine’s power, in units of horsepower
(1 hp=746 W).

√

(c) The compression ratio of an engine is defined as x2/x1. Explain
in words why the car’s power would be exactly the same if x1 and
x2 were, say, halved or tripled, maintaining the same compression
ratio of 8.5. Explain why this would not quite be true with the more
realistic force equation F = a/x1.4.
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Problem 8.

8 The figure, redrawn from Gray’s Anatomy, shows the tension
of which a muscle is capable. The variable x is defined as the con-
traction of the muscle from its maximum length L, so that at x = 0
the muscle has length L, and at x = L the muscle would theoreti-
cally have zero length. In reality, the muscle can only contract to
x = cL, where c is less than 1. When the muscle is extended to its
maximum length, at x = 0, it is capable of the greatest tension, To.
As the muscle contracts, however, it becomes weaker. Gray suggests
approximating this function as a linear decrease, which would theo-
retically extrapolate to zero at x = L. (a) Find the maximum work
the muscle can do in one contraction, in terms of c, L, and To.

√

(b) Show that your answer to part a has the right units.
(c) Show that your answer to part a has the right behavior when
c = 0 and when c = 1.
(d) Gray also states that the absolute maximum tension To has
been found to be approximately proportional to the muscle’s cross-
sectional area A (which is presumably measured at x = 0), with
proportionality constant k. Approximating the muscle as a cylin-
der, show that your answer from part a can be reexpressed in terms
of the volume, V , eliminating L and A.

√

(e) Evaluate your result numerically for a biceps muscle with a vol-
ume of 200 cm3, with c = 0.8 and k = 100 N/cm2 as estimated by
Gray.

√

9 In the earth’s atmosphere, the molecules are constantly moving
around. Because temperature is a measure of kinetic energy per
molecule, the average kinetic energy of each type of molecule is the
same, e.g., the average KE of the O2 molecules is the same as the
average KE of the N2 molecules. (a) If the mass of an O2 molecule
is eight times greater than that of a He atom, what is the ratio of
their average speeds? Which way is the ratio, i.e., which is typically
moving faster? (b) Use your result from part a to explain why any
helium occurring naturally in the atmosphere has long since escaped
into outer space, never to return. (Helium is obtained commercially
by extracting it from rocks.) You may want to do problem 12 first,
for insight.

10 Weiping lifts a rock with a weight of 1.0 N through a height
of 1.0 m, and then lowers it back down to the starting point. Bubba
pushes a table 1.0 m across the floor at constant speed, requiring
a force of 1.0 N, and then pushes it back to where it started. (a)
Compare the total work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using the definition of work:
work is the transfer of energy. In your answer, you’ll need to discuss
what specific type of energy is involved in each case.
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11 In one of his more flamboyant moments, Galileo wrote “Who
does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height
or a cat from a height of eight or ten cubits will suffer no injury?
Equally harmless would be the fall of a grasshopper from a tower or
the fall of an ant from the distance of the moon.” Find the speed
of an ant that falls to earth from the distance of the moon at the
moment when it is about to enter the atmosphere. Assume it is
released from a point that is not actually near the moon, so the
moon’s gravity is negligible. You will need the result of example 9
on p. 343.

√

12 Starting at a distance r from a planet of mass M , how fast
must an object be moving in order to have a hyperbolic orbit, i.e.,
one that never comes back to the planet? This velocity is called
the escape velocity. Interpreting the result, does it matter in what
direction the velocity is? Does it matter what mass the object has?
Does the object escape because it is moving too fast for gravity to
act on it?

√

13 A projectile is moving directly away from a planet of mass
M at exactly escape velocity. (a) Find r, the distance from the
projectile to the center of the planet, as a function of time, t, and
also find v(t).
(b) Check the units of your answer.
(c) Does v show the correct behavior as t approaches infinity?

. Hint, p. 508

14 A car starts from rest at t = 0, and starts speeding up with
constant acceleration. (a) Find the car’s kinetic energy in terms of
its mass, m, acceleration, a, and the time, t. (b) Your answer in
the previous part also equals the amount of work, W , done from
t = 0 until time t. Take the derivative of the previous expression
to find the power expended by the car at time t. (c) Suppose two
cars with the same mass both start from rest at the same time, but
one has twice as much acceleration as the other. At any moment,
how many times more power is being dissipated by the more quickly
accelerating car? (The answer is not 2.)

√
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15 A car accelerates from rest. At low speeds, its acceleration
is limited by static friction, so that if we press too hard on the
gas, we will “burn rubber” (or, for many newer cars, a computer-
ized traction-control system will override the gas pedal). At higher
speeds, the limit on acceleration comes from the power of the engine,
which puts a limit on how fast kinetic energy can be developed.
(a) Show that if a force F is applied to an object moving at speed
v, the power required is given by P = vF .
(b) Find the speed v at which we cross over from the first regime de-
scribed above to the second. At speeds higher than this, the engine
does not have enough power to burn rubber. Express your result
in terms of the car’s power P , its mass m, the coefficient of static
friction µs, and g.

√

(c) Show that your answer to part b has units that make sense.
(d) Show that the dependence of your answer on each of the four
variables makes sense physically.
(e) The 2010 Maserati Gran Turismo Convertible has a maximum
power of 3.23×105 W (433 horsepower) and a mass (including a 50-
kg driver) of 2.03× 103 kg. (This power is the maximum the engine
can supply at its optimum frequency of 7600 r.p.m. Presumably the
automatic transmission is designed so a gear is available in which
the engine will be running at very nearly this frequency when the
car is at moving at v.) Rubber on asphalt has µs ≈ 0.9. Find v for
this car. Answer: 18 m/s, or about 40 miles per hour.
(f) Our analysis has neglected air friction, which can probably be
approximated as a force proportional to v2. The existence of this
force is the reason that the car has a maximum speed, which is 176
miles per hour. To get a feeling for how good an approximation
it is to ignore air friction, find what fraction of the engine’s maxi-
mum power is being used to overcome air resistance when the car is
moving at the speed v found in part e. Answer: 1%

16 In 1935, Yukawa proposed an early theory of the force that
held the neutrons and protons together in the nucleus. His equa-
tion for the potential energy of two such particles, at a center-to-
center distance r, was PE(r) = gr−1e−r/a, where g parametrizes the
strength of the interaction, e is the base of natural logarithms, and
a is about 10−15 m. Find the force between two nucleons that would
be consistent with this equation for the potential energy.

√

17 The magnitude of the force between two magnets separated
by a distance r can be approximated as kr−3 for large values of r.
The constant k depends on the strengths of the magnets and the
relative orientations of their north and south poles. Two magnets
are released on a slippery surface at an initial distance ri, and begin
sliding towards each other. What will be the total kinetic energy
of the two magnets when they reach a final distance rf? (Ignore
friction.)

√
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18 A rail gun is a device like a train on a track, with the train
propelled by a powerful electrical pulse. Very high speeds have been
demonstrated in test models, and rail guns have been proposed as
an alternative to rockets for sending into outer space any object
that would be strong enough to survive the extreme accelerations.
Suppose that the rail gun capsule is launched straight up, and that
the force of air friction acting on it is given by F = be−cx, where x
is the altitude, b and c are constants, and e is the base of natural
logarithms. The exponential decay occurs because the atmosphere
gets thinner with increasing altitude. (In reality, the force would
probably drop off even faster than an exponential, because the cap-
sule would be slowing down somewhat.) Find the amount of kinetic
energy lost by the capsule due to air friction between when it is
launched and when it is completely beyond the atmosphere. (Grav-
ity is negligible, since the air friction force is much greater than the
gravitational force.)

√

19 A certain binary star system consists of two stars with masses
m1 and m2, separated by a distance b. A comet, originally nearly
at rest in deep space, drops into the system and at a certain point
in time arrives at the midpoint between the two stars. For that
moment in time, find its velocity, v, symbolically in terms of b, m1,
m2, and fundamental constants.

√

20 Find the angle between the following two vectors:

x̂ + 2ŷ + 3ẑ

4x̂ + 5ŷ + 6ẑ

. Hint, p. 508
√

21 An airplane flies in the positive direction along the x axis,
through crosswinds that exert a force F = (a + bx)x̂ + (c + dx)ŷ.
Find the work done by the wind on the plane, and by the plane on
the wind, in traveling from the origin to position x.

22 Prove that the dot product defined in section 13.3 is rota-
tionally invariant in the sense of section 7.5.

23 Fill in the details of the proof of A·B = AxBx+AyBy+AzBz
on page 340.

Problems 359



24 A space probe of mass m is dropped into a previously un-
explored spherical cloud of gas and dust, and accelerates toward
the center of the cloud under the influence of the cloud’s gravity.
Measurements of its velocity allow its potential energy, PE, to be
determined as a function of the distance r from the cloud’s cen-
ter. The mass in the cloud is distributed in a spherically symmetric
way, so its density, ρ(r), depends only on r and not on the angular
coordinates. Show that by finding PE, one can infer ρ(r) as follows:

ρ(r) =
1

4πGmr2

d

dr

(
r2 dPE

dr

)
.

?

25 The purpose of this problem is to estimate the height of the
tides. The main reason for the tides is the moon’s gravity, and we’ll
neglect the effect of the sun. Also, real tides are heavily influenced
by landforms that channel the flow of water, but we’ll think of the
earth as if it was completely covered with oceans. Under these
assumptions, the ocean surface should be a surface of constant U/m.
That is, a thimbleful of water, m, should not be able to gain or lose
any gravitational energy by moving from one point on the ocean
surface to another. If only the spherical earth’s gravity was present,
then we’d have U/m = −GMe/r, and a surface of constant U/m
would be a surface of constant r, i.e., the ocean’s surface would be
spherical. Taking into account the moon’s gravity, the main effect is
to shift the center of the sphere, but the sphere also becomes slightly
distorted into an approximately ellipsoidal shape. (The shift of the
center is not physically related to the tides, since the solid part of
the earth tends to be centered within the oceans; really, this effect
has to do with the motion of the whole earth through space, and
the way that it wobbles due to the moon’s gravity.) Determine the
amount by which the long axis of the ellipsoid exceeds the short
axis. . Hint, p. 508 ?
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Pool balls exchange momentum.

Chapter 14

Conservation of
momentum

In many subfields of physics these days, it is possible to read an
entire issue of a journal without ever encountering an equation in-
volving force or a reference to Newton’s laws of motion. In the last
hundred and fifty years, an entirely different framework has been
developed for physics, based on conservation laws.

The new approach is not just preferred because it is in fashion.
It applies inside an atom or near a black hole, where Newton’s laws
do not. Even in everyday situations the new approach can be supe-
rior. We have already seen how perpetual motion machines could be
designed that were too complex to be easily debunked by Newton’s
laws. The beauty of conservation laws is that they tell us something
must remain the same, regardless of the complexity of the process.

So far we have discussed only two conservation laws, the laws of
conservation of mass and energy. Is there any reason to believe that
further conservation laws are needed in order to replace Newton’s
laws as a complete description of nature? Yes. Conservation of mass
and energy do not relate in any way to the three dimensions of space,
because both are scalars. Conservation of energy, for instance, does
not prevent the planet earth from abruptly making a 90-degree turn
and heading straight into the sun, because kinetic energy does not
depend on direction. In this chapter, we develop a new conserved
quantity, called momentum, which is a vector.
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14.1 Momentum
A conserved quantity of motion

Your first encounter with conservation of momentum may have
come as a small child unjustly confined to a shopping cart. You spot
something interesting to play with, like the display case of imported
wine down at the end of the aisle, and decide to push the cart over
there. But being imprisoned by Dad in the cart was not the only
injustice that day. There was a far greater conspiracy to thwart
your young id, one that originated in the laws of nature. Pushing
forward did nudge the cart forward, but it pushed you backward.
If the wheels of the cart were well lubricated, it wouldn’t matter
how you jerked, yanked, or kicked off from the back of the cart.
You could not cause any overall forward motion of the entire system
consisting of the cart with you inside.

In the Newtonian framework, we describe this as arising from
Newton’s third law. The cart made a force on you that was equal
and opposite to your force on it. In the framework of conservation
laws, we cannot attribute your frustration to conservation of energy.
It would have been perfectly possible for you to transform some of
the internal chemical energy stored in your body to kinetic energy
of the cart and your body.

The following characteristics of the situation suggest that there
may be a new conservation law involved:

A closed system is involved. All conservation laws deal with
closed systems. You and the cart are a closed system, since the
well-oiled wheels prevent the floor from making any forward force
on you.

Something remains unchanged. The overall velocity of the
system started out being zero, and you cannot change it. This
vague reference to “overall velocity” can be made more precise:
it is the velocity of the system’s center of mass that cannot be
changed.

Something can be transferred back and forth without
changing the total amount. If we define forward as positive
and backward as negative, then one part of the system can gain
positive motion if another part acquires negative motion. If we
don’t want to worry about positive and negative signs, we can
imagine that the whole cart was initially gliding forward on its
well-oiled wheels. By kicking off from the back of the cart, you
could increase your own velocity, but this inevitably causes the
cart to slow down.
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It thus appears that there is some numerical measure of an object’s
quantity of motion that is conserved when you add up all the objects
within a system.

Momentum

Although velocity has been referred to, it is not the total velocity
of a closed system that remains constant. If it was, then firing a
gun would cause the gun to recoil at the same velocity as the bullet!
The gun does recoil, but at a much lower velocity than the bullet.
Newton’s third law tells us

Fgun on bullet = −Fbullet on gun ,

and assuming a constant force for simplicity, Newton’s second law
allows us to change this to

mbullet
∆vbullet

∆t
= −mgun

∆vgun
∆t

.

Thus if the gun has 100 times more mass than the bullet, it will
recoil at a velocity that is 100 times smaller and in the opposite
direction, represented by the opposite sign. The quantity mv is
therefore apparently a useful measure of motion, and we give it a
name, momentum, and a symbol, p. (As far as I know, the letter
“p” was just chosen at random, since “m” was already being used for
mass.) The situations discussed so far have been one-dimensional,
but in three-dimensional situations it is treated as a vector.

definition of momentum for material objects
The momentum of a material object, i.e., a piece of matter, is defined
as

p = mv ,

the product of the object’s mass and its velocity vector.

The units of momentum are kg·m/s, and there is unfortunately no
abbreviation for this clumsy combination of units.

The reasoning leading up to the definition of momentum was all
based on the search for a conservation law, and the only reason why
we bother to define such a quantity is that experiments show it is
conserved:

the law of conservation of momentum
In any closed system, the vector sum of all the momenta remains
constant,

p1i + p2i + . . . = p1f + p2f + . . . ,

where i labels the initial and f the final momenta. (A closed system
is one on which no external forces act.)
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This chapter first addresses the one-dimensional case, in which the
direction of the momentum can be taken into account by using plus
and minus signs. We then pass to three dimensions, necessitating
the use of vector addition.

A subtle point about conservation laws is that they all refer to
“closed systems,” but “closed” means different things in different
cases. When discussing conservation of mass, “closed” means a sys-
tem that doesn’t have matter moving in or out of it. With energy,
we mean that there is no work or heat transfer occurring across
the boundary of the system. For momentum conservation, “closed”
means there are no external forces reaching into the system.

A cannon example 1
. A cannon of mass 1000 kg fires a 10-kg shell at a velocity of
200 m/s. At what speed does the cannon recoil?

. The law of conservation of momentum tells us that

pcannon,i + pshell ,i = pcannon,f + pshell ,f .

Choosing a coordinate system in which the cannon points in the
positive direction, the given information is

pcannon,i = 0
pshell ,i = 0
pshell ,f = 2000 kg·m/s .

We must have pcannon,f = −2000 kg·m/s, so the recoil velocity of
the cannon is −2 m/s.

Ion drive for propelling spacecraft example 2
. The experimental solar-powered ion drive of the Deep Space 1
space probe expels its xenon gas exhaust at a speed of 30,000
m/s, ten times faster than the exhaust velocity for a typical chem-
ical-fuel rocket engine. Roughly how many times greater is the
maximum speed this spacecraft can reach, compared with a chem-
ical-fueled probe with the same mass of fuel (“reaction mass”)
available for pushing out the back as exhaust?

. Momentum equals mass multiplied by velocity. Both spacecraft
are assumed to have the same amount of reaction mass, and the
ion drive’s exhaust has a velocity ten times greater, so the mo-
mentum of its exhaust is ten times greater. Before the engine
starts firing, neither the probe nor the exhaust has any momen-
tum, so the total momentum of the system is zero. By conserva-
tion of momentum, the total momentum must also be zero after
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a / The ion drive engine of the NASA Deep Space 1 probe, shown
under construction (left) and being tested in a vacuum chamber (right)
prior to its October 1998 launch. Intended mainly as a test vehicle for new
technologies, the craft nevertheless carried out a successful scientific
program that included a flyby of a comet.

all the exhaust has been expelled. If we define the positive di-
rection as the direction the spacecraft is going, then the negative
momentum of the exhaust is canceled by the positive momen-
tum of the spacecraft. The ion drive allows a final speed that is
ten times greater. (This simplified analysis ignores the fact that
the reaction mass expelled later in the burn is not moving back-
ward as fast, because of the forward speed of the already-moving
spacecraft.)

Generalization of the momentum concept

As with all the conservation laws, the law of conservation of mo-
mentum has evolved over time. In the 1800’s it was found that a
beam of light striking an object would give it some momentum, even
though light has no mass, and would therefore have no momentum
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b / Steam and other gases
boiling off of the nucleus of Hal-
ley’s comet. This close-up photo
was taken by the European Giotto
space probe, which passed within
596 km of the nucleus on March
13, 1986.

c / Halley’s comet, in a much
less magnified view from a
ground-based telescope.

according to the above definition. Rather than discarding the princi-
ple of conservation of momentum, the physicists of the time decided
to see if the definition of momentum could be extended to include
momentum carried by light. The process is analogous to the process
outlined on page 293 for identifying new forms of energy. The first
step was the discovery that light could impart momentum to matter,
and the second step was to show that the momentum possessed by
light could be related in a definite way to observable properties of
the light. They found that conservation of momentum could be suc-
cessfully generalized by attributing to a beam of light a momentum
vector in the direction of the light’s motion and having a magnitude
proportional to the amount of energy the light possessed. The mo-
mentum of light is negligible under ordinary circumstances, e.g., a
flashlight left on for an hour would only absorb about 10−5 kg·m/s
of momentum as it recoiled.

The tail of a comet example 3
Momentum is not always equal to mv . Like many comets, Hal-
ley’s comet has a very elongated elliptical orbit. About once per
century, its orbit brings it close to the sun. The comet’s head, or
nucleus, is composed of dirty ice, so the energy deposited by the
intense sunlight boils off steam and dust, b. The sunlight does
not just carry energy, however — it also carries momentum. The
momentum of the sunlight impacting on the smaller dust particles
pushes them away from the sun, forming a tail, c. By analogy
with matter, for which momentum equals mv , you would expect
that massless light would have zero momentum, but the equation
p = mv is not the correct one for light, and light does have mo-
mentum. (The gases typically form a second, distinct tail whose
motion is controlled by the sun’s magnetic field.)

The reason for bringing this up is not so that you can plug
numbers into a formulas in these exotic situations. The point is
that the conservation laws have proven so sturdy exactly because
they can easily be amended to fit new circumstances. Newton’s
laws are no longer at the center of the stage of physics because they
did not have the same adaptability. More generally, the moral of
this story is the provisional nature of scientific truth.

It should also be noted that conservation of momentum is not
a consequence of Newton’s laws, as is often asserted in textbooks.
Newton’s laws do not apply to light, and therefore could not pos-
sibly be used to prove anything about a concept as general as the
conservation of momentum in its modern form.

Momentum compared to kinetic energy

Momentum and kinetic energy are both measures of the quan-
tity of motion, and a sideshow in the Newton-Leibnitz controversy
over who invented calculus was an argument over whether mv (i.e.,
momentum) or mv2 (i.e., kinetic energy without the 1/2 in front)
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was the “true” measure of motion. The modern student can cer-
tainly be excused for wondering why we need both quantities, when
their complementary nature was not evident to the greatest minds
of the 1700’s. The following table highlights their differences.

kinetic energy . . . momentum . . .

is a scalar. is a vector

is not changed by a force perpendic-
ular to the motion, which changes
only the direction of the velocity
vector.

is changed by any force, since a
change in either the magnitude or
the direction of the velocity vector
will result in a change in the mo-
mentum vector.

is always positive, and cannot cancel
out.

cancels with momentum in the op-
posite direction.

can be traded for other forms of en-
ergy that do not involve motion. KE
is not a conserved quantity by itself.

is always conserved in a closed sys-
tem.

is quadrupled if the velocity is dou-
bled.

is doubled if the velocity is doubled.

A spinning top example 4
A spinning top has zero total momentum, because for every mov-
ing point, there is another point on the opposite side that cancels
its momentum. It does, however, have kinetic energy.

Momentum and kinetic energy in firing a rifle example 5
The rifle and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some mo-
mentum in the forward direction, but this is canceled by the rifle’s
backward momentum, so the total momentum is still zero. The
kinetic energies of the gun and bullet are both positive scalars,
however, and do not cancel. The total kinetic energy is allowed to
increase, because kinetic energy is being traded for other forms
of energy. Initially there is chemical energy in the gunpowder.
This chemical energy is converted into heat, sound, and kinetic
energy. The gun’s “backward” kinetic energy does not refrigerate
the shooter’s shoulder!

The wobbly earth example 6
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, and the earth’s gravitational force does not do any work
on the moon. The reversed velocity vector does, however, imply
a reversed momentum vector, so conservation of momentum in
the closed earth-moon system tells us that the earth must also
change its momentum. In fact, the earth wobbles in a little “or-
bit” about a point below its surface on the line connecting it and
the moon. The two bodies’ momentum vectors always point in
opposite directions and cancel each other out.
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d / This Hubble Space Tele-
scope photo shows a small
galaxy (yellow blob in the lower
right) that has collided with a
larger galaxy (spiral near the
center), producing a wave of star
formation (blue track) due to the
shock waves passing through
the galaxies’ clouds of gas. This
is considered a collision in the
physics sense, even though it is
statistically certain that no star in
either galaxy ever struck a star in
the other. (This is because the
stars are very small compared to
the distances between them.)

The earth and moon get a divorce example 7
Why can’t the moon suddenly decide to fly off one way and the
earth the other way? It is not forbidden by conservation of mo-
mentum, because the moon’s newly acquired momentum in one
direction could be canceled out by the change in the momentum
of the earth, supposing the earth headed the opposite direction
at the appropriate, slower speed. The catastrophe is forbidden by
conservation of energy, because both their energies would have
to increase greatly.

Momentum and kinetic energy of a glacier example 8
A cubic-kilometer glacier would have a mass of about 1012 kg. If
it moves at a speed of 10−5 m/s, then its momentum is 107 kg ·
m/s. This is the kind of heroic-scale result we expect, perhaps
the equivalent of the space shuttle taking off, or all the cars in LA
driving in the same direction at freeway speed. Its kinetic energy,
however, is only 50 J, the equivalent of the calories contained
in a poppy seed or the energy in a drop of gasoline too small
to be seen without a microscope. The surprisingly small kinetic
energy is because kinetic energy is proportional to the square of
the velocity, and the square of a small number is an even smaller
number.

Discussion questions

A If all the air molecules in the room settled down in a thin film on the
floor, would that violate conservation of momentum as well as conserva-
tion of energy?

B A refrigerator has coils in back that get hot, and heat is molecular
motion. These moving molecules have both energy and momentum. Why
doesn’t the refrigerator need to be tied to the wall to keep it from recoiling
from the momentum it loses out the back?

14.2 Collisions in one dimension

Physicists employ the term “collision” in a broader sense than
ordinary usage, applying it to any situation where objects interact
for a certain period of time. A bat hitting a baseball, a radioactively
emitted particle damaging DNA, and a gun and a bullet going their
separate ways are all examples of collisions in this sense. Physical
contact is not even required. A comet swinging past the sun on a
hyperbolic orbit is considered to undergo a collision, even though it
never touches the sun. All that matters is that the comet and the
sun exerted gravitational forces on each other.

The reason for broadening the term “collision” in this way is
that all of these situations can be attacked mathematically using
the same conservation laws in similar ways. In the first example,
conservation of momentum is all that is required.
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Getting rear-ended example 9
.Ms. Chang is rear-ended at a stop light by Mr. Nelson, and sues
to make him pay her medical bills. He testifies that he was only
going 35 miles per hour when he hit Ms. Chang. She thinks he
was going much faster than that. The cars skidded together after
the impact, and measurements of the length of the skid marks
and the coefficient of friction show that their joint velocity immedi-
ately after the impact was 19 miles per hour. Mr. Nelson’s Nissan
weighs 3100 pounds, and Ms. Chang ’s Cadillac weighs 5200
pounds. Is Mr. Nelson telling the truth?

. Since the cars skidded together, we can write down the equation
for conservation of momentum using only two velocities, v for Mr.
Nelson’s velocity before the crash, and v ′ for their joint velocity
afterward:

mNv = mNv ′ + mCv ′ .

Solving for the unknown, v , we find

v =
(

1 +
mC

mN

)
v ′ .

Although we are given the weights in pounds, a unit of force, the
ratio of the masses is the same as the ratio of the weights, and
we find v = 51 miles per hour. He is lying.

The above example was simple because both cars had the same
velocity afterward. In many one-dimensional collisions, however, the
two objects do not stick. If we wish to predict the result of such a
collision, conservation of momentum does not suffice, because both
velocities after the collision are unknown, so we have one equation
in two unknowns.

Conservation of energy can provide a second equation, but its
application is not as straightforward, because kinetic energy is only
the particular form of energy that has to do with motion. In many
collisions, part of the kinetic energy that was present before the
collision is used to create heat or sound, or to break the objects
or permanently bend them. Cars, in fact, are carefully designed to
crumple in a collision. Crumpling the car uses up energy, and that’s
good because the goal is to get rid of all that kinetic energy in a
relatively safe and controlled way. At the opposite extreme, a su-
perball is “super” because it emerges from a collision with almost all
its original kinetic energy, having only stored it briefly as potential
energy while it was being squashed by the impact.

Collisions of the superball type, in which almost no kinetic en-
ergy is converted to other forms of energy, can thus be analyzed
more thoroughly, because they have KEf = KEi, as opposed to
the less useful inequality KEf < KEi for a case like a tennis ball
bouncing on grass.
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Gory Details of the Proof in
Example 10

The equation A + B = C + D says
that the change in one ball’s ve-
locity is equal and opposite to the
change in the other’s. We invent a
symbol x = C − A for the change
in ball 1’s velocity. The second
equation can then be rewritten as
A2+B2 = (A+x)2+(B−x)2. Squar-
ing out the quantities in parenthe-
ses and then simplifying, we get
0 = Ax − Bx + x2. The equation
has the trivial solution x = 0, i.e.,
neither ball’s velocity is changed,
but this is physically impossible be-
cause the balls can’t travel through
each other like ghosts. Assuming
x 6= 0, we can divide by x and
solve for x = B − A. This means
that ball 1 has gained an amount
of velocity exactly right to match
ball 2’s initial velocity, and vice-
versa. The balls must have swap-
ped velocities.

Pool balls colliding head-on example 10
. Two pool balls collide head-on, so that the collision is restricted
to one dimension. Pool balls are constructed so as to lose as little
kinetic energy as possible in a collision, so under the assumption
that no kinetic energy is converted to any other form of energy,
what can we predict about the results of such a collision?

. Pool balls have identical masses, so we use the same symbol
m for both. Conservation of momentum and no loss of kinetic
energy give us the two equations

mv1i + mv2i = mv1f + mv2f

1
2

mv2
1i +

1
2

mv2
2i =

1
2

mv2
1f +

1
2

mv2
2f

The masses and the factors of 1/2 can be divided out, and we
eliminate the cumbersome subscripts by replacing the symbols
v1i ,... with the symbols A, B, C, and D:

A + B = C + D

A2 + B2 = C2 + D2 .

A little experimentation with numbers shows that given values of A
and B, it is impossible to find C and D that satisfy these equations
unless C and D equal A and B, or C and D are the same as A
and B but swapped around. A formal proof of this fact is given
in the sidebar. In the special case where ball 2 is initially at rest,
this tells us that ball 1 is stopped dead by the collision, and ball
2 heads off at the velocity originally possessed by ball 1. This
behavior will be familiar to players of pool.

Often, as in the example above, the details of the algebra are
the least interesting part of the problem, and considerable physical
insight can be gained simply by counting the number of unknowns
and comparing to the number of equations. Suppose a beginner at
pool notices a case where her cue ball hits an initially stationary
ball and stops dead. “Wow, what a good trick,” she thinks. “I
bet I could never do that again in a million years.” But she tries
again, and finds that she can’t help doing it even if she doesn’t
want to. Luckily she has just learned about collisions in her physics
course. Once she has written down the equations for conservation
of energy and no loss of kinetic energy, she really doesn’t have to
complete the algebra. She knows that she has two equations in
two unknowns, so there must be a well-defined solution. Once she
has seen the result of one such collision, she knows that the same
thing must happen every time. The same thing would happen with
colliding marbles or croquet balls. It doesn’t matter if the masses or
velocities are different, because that just multiplies both equations
by some constant factor.
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The discovery of the neutron

This was the type of reasoning employed by James Chadwick in
his 1932 discovery of the neutron. At the time, the atom was imag-
ined to be made out of two types of fundamental particles, protons
and electrons. The protons were far more massive, and clustered
together in the atom’s core, or nucleus. Attractive electrical forces
caused the electrons to orbit the nucleus in circles, in much the
same way that gravitational forces kept the planets from cruising
out of the solar system. Experiments showed that the helium nu-
cleus, for instance, exerted exactly twice as much electrical force on
an electron as a nucleus of hydrogen, the smallest atom, and this was
explained by saying that helium had two protons to hydrogen’s one.
The trouble was that according to this model, helium would have
two electrons and two protons, giving it precisely twice the mass of
a hydrogen atom with one of each. In fact, helium has about four
times the mass of hydrogen.

Chadwick suspected that the helium nucleus possessed two addi-
tional particles of a new type, which did not participate in electrical
forces at all, i.e., were electrically neutral. If these particles had very
nearly the same mass as protons, then the four-to-one mass ratio of
helium and hydrogen could be explained. In 1930, a new type of
radiation was discovered that seemed to fit this description. It was
electrically neutral, and seemed to be coming from the nuclei of light
elements that had been exposed to other types of radiation. At this
time, however, reports of new types of particles were a dime a dozen,
and most of them turned out to be either clusters made of previ-
ously known particles or else previously known particles with higher
energies. Many physicists believed that the “new” particle that had
attracted Chadwick’s interest was really a previously known particle
called a gamma ray, which was electrically neutral. Since gamma
rays have no mass, Chadwick decided to try to determine the new
particle’s mass and see if it was nonzero and approximately equal
to the mass of a proton.

Unfortunately a subatomic particle is not something you can
just put on a scale and weigh. Chadwick came up with an ingenious
solution. The masses of the nuclei of the various chemical elements
were already known, and techniques had already been developed for
measuring the speed of a rapidly moving nucleus. He therefore set
out to bombard samples of selected elements with the mysterious
new particles. When a direct, head-on collision occurred between
a mystery particle and the nucleus of one of the target atoms, the
nucleus would be knocked out of the atom, and he would measure
its velocity.

Suppose, for instance, that we bombard a sample of hydrogen
atoms with the mystery particles. Since the participants in the
collision are fundamental particles, there is no way for kinetic energy
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e / Chadwick’s subatomic pool table. A disk of the naturally occur-
ring metal polonium provides a source of radiation capable of kicking
neutrons out of the beryllium nuclei. The type of radiation emitted by
the polonium is easily absorbed by a few mm of air, so the air has to be
pumped out of the left-hand chamber. The neutrons, Chadwick’s mystery
particles, penetrate matter far more readily, and fly out through the wall
and into the chamber on the right, which is filled with nitrogen or hydrogen
gas. When a neutron collides with a nitrogen or hydrogen nucleus, it
kicks it out of its atom at high speed, and this recoiling nucleus then rips
apart thousands of other atoms of the gas. The result is an electrical
pulse that can be detected in the wire on the right. Physicists had already
calibrated this type of apparatus so that they could translate the strength
of the electrical pulse into the velocity of the recoiling nucleus. The
whole apparatus shown in the figure would fit in the palm of your hand, in
dramatic contrast to today’s giant particle accelerators.

to be converted into heat or any other form of energy, and Chadwick
thus had two equations in three unknowns:

equation #1: conservation of momentum

equation #2: no loss of kinetic energy

unknown #1: mass of the mystery particle

unknown #2: initial velocity of the mystery particle

unknown #3: final velocity of the mystery particle

The number of unknowns is greater than the number of equa-
tions, so there is no unique solution. But by creating collisions with
nuclei of another element, nitrogen, he gained two more equations
at the expense of only one more unknown:

equation #3: conservation of momentum in the new collision

equation #4: no loss of kinetic energy in the new collision

unknown #4: final velocity of the mystery particle in the new
collision
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g / Two hockey pucks collide.
Their mutual center of mass
traces the straight path shown by
the dashed line.

He was thus able to solve for all the unknowns, including the
mass of the mystery particle, which was indeed within 1% of the
mass of a proton. He named the new particle the neutron, since it
is electrically neutral.

Discussion question

A Good pool players learn to make the cue ball spin, which can cause
it not to stop dead in a head-on collision with a stationary ball. If this does
not violate the laws of physics, what hidden assumption was there in the
example above?

14.3 ? Relationship of momentum to the
center of mass

f / In this multiple-flash photo-
graph, we see the wrench from
above as it flies through the air,
rotating as it goes. Its center
of mass, marked with the black
cross, travels along a straight line,
unlike the other points on the
wrench, which execute loops.

We have already discussed the idea of the center of mass on
p. 59, but using the concept of momentum we can now find a math-
ematical method for defining the center of mass, explain why the
motion of an object’s center of mass usually exhibits simpler mo-
tion than any other point, and gain a very simple and powerful way
of understanding collisions.

The first step is to realize that the center of mass concept can
be applied to systems containing more than one object. Even some-
thing like a wrench, which we think of as one object, is really made
of many atoms. The center of mass is particularly easy to visualize
in the case shown on the left, where two identical hockey pucks col-
lide. It is clear on grounds of symmetry that their center of mass
must be at the midpoint between them. After all, we previously de-
fined the center of mass as the balance point, and if the two hockey
pucks were joined with a very lightweight rod whose own mass was
negligible, they would obviously balance at the midpoint. It doesn’t
matter that the hockey pucks are two separate objects. It is still
true that the motion of their center of mass is exceptionally simple,
just like that of the wrench’s center of mass.

The x coordinate of the hockey pucks’ center of mass is thus
given by xcm = (x1 + x2)/2, i.e., the arithmetic average of their
x coordinates. Why is its motion so simple? It has to do with
conservation of momentum. Since the hockey pucks are not being
acted on by any net external force, they constitute a closed system,
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and their total momentum is conserved. Their total momentum is

mv1 +mv2 = m(v1 + v2)

= m

(
∆x1

∆t
+

∆x2

∆t

)
=

m

∆t
∆ (x1 + x2)

= m
2∆xcm

∆t
= mtotalvcm

In other words, the total momentum of the system is the same as
if all its mass was concentrated at the center of mass point. Since
the total momentum is conserved, the x component of the center of
mass’s velocity vector cannot change. The same is also true for the
other components, so the center of mass must move along a straight
line at constant speed.

The above relationship between the total momentum and the
motion of the center of mass applies to any system, even if it is not
closed.

total momentum related to center of mass motion
The total momentum of any system is related to its total mass
and the velocity of its center of mass by the equation

ptotal = mtotalvcm .

What about a system containing objects with unequal masses,
or containing more than two objects? The reasoning above can be
generalized to a weighted average

xcm =
m1x1 +m2x2 + . . .

m1 +m2 + . . .
,

with similar equations for the y and z coordinates.

Momentum in different frames of reference

Absolute motion is supposed to be undetectable, i.e., the laws
of physics are supposed to be equally valid in all inertial frames
of reference. If we first calculate some momenta in one frame of
reference and find that momentum is conserved, and then rework
the whole problem in some other frame of reference that is moving
with respect to the first, the numerical values of the momenta will
all be different. Even so, momentum will still be conserved. All that
matters is that we work a single problem in one consistent frame of
reference.

One way of proving this is to apply the equation ptotal =
mtotalvcm. If the velocity of frame B relative to frame A is vBA,
then the only effect of changing frames of reference is to change
vcm from its original value to vcm + vBA. This adds a constant
onto the momentum vector, which has no effect on conservation of
momentum.
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h / Moving your head so that
you are always looking down
from right above the center of
mass, you observe the collision
of the two hockey pucks in the
center of mass frame.

i / The slingshot effect viewed
in the sun’s frame of reference.
Jupiter is moving to the left, and
the collision is head-on.

j / The slingshot viewed in
the frame of the center of mass of
the Jupiter-spacecraft system.

The center of mass frame of reference

A particularly useful frame of reference in many cases is the
frame that moves along with the center of mass, called the center
of mass (c.m.) frame. In this frame, the total momentum is zero.
The following examples show how the center of mass frame can be
a powerful tool for simplifying our understanding of collisions.

A collision of pool balls viewed in the c.m. frame example 11
If you move your head so that your eye is always above the point
halfway in between the two pool balls, you are viewing things in
the center of mass frame. In this frame, the balls come toward the
center of mass at equal speeds. By symmetry, they must there-
fore recoil at equal speeds along the lines on which they entered.
Since the balls have essentially swapped paths in the center of
mass frame, the same must also be true in any other frame. This
is the same result that required laborious algebra to prove previ-
ously without the concept of the center of mass frame.

The slingshot effect example 12
It is a counterintuitive fact that a spacecraft can pick up speed
by swinging around a planet, if arrives in the opposite direction
compared to the planet’s motion. Although there is no physical
contact, we treat the encounter as a one-dimensional collision,
and analyze it in the center of mass frame. Figure i shows such
a “collision,” with a space probe whipping around Jupiter. In the
sun’s frame of reference, Jupiter is moving.

What about the center of mass frame? Since Jupiter is so much
more massive than the spacecraft, the center of mass is essen-
tially fixed at Jupiter’s center, and Jupiter has zero velocity in the
center of mass frame, as shown in figure j. The c.m. frame is
moving to the left compared to the sun-fixed frame used in i, so
the spacecraft’s initial velocity is greater in this frame.

Things are simpler in the center of mass frame, because it is more
symmetric. In the complicated sun-fixed frame, the incoming leg
of the encounter is rapid, because the two bodies are rushing to-
ward each other, while their separation on the outbound leg is
more gradual, because Jupiter is trying to catch up. In the c.m.
frame, Jupiter is sitting still, and there is perfect symmetry be-
tween the incoming and outgoing legs, so by symmetry we have
v1f = −v1i . Going back to the sun-fixed frame, the spacecraft’s
final velocity is increased by the frames’ motion relative to each
other. In the sun-fixed frame, the spacecraft’s velocity has in-
creased greatly.

The result can also be understood in terms of work and energy.
In Jupiter’s frame, Jupiter is not doing any work on the spacecraft
as it rounds the back of the planet, because the motion is per-
pendicular to the force. But in the sun’s frame, the spacecraft’s
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k / Power and force are the
rates at which energy and
momentum are transferred.

velocity vector at the same moment has a large component to the
left, so Jupiter is doing work on it.

Discussion questions

A Make up a numerical example of two unequal masses moving in one
dimension at constant velocity, and verify the equation ptotal = mtotalvcm
over a time interval of one second.

B A more massive tennis racquet or baseball bat makes the ball fly
off faster. Explain why this is true, using the center of mass frame. For
simplicity, assume that the racquet or bat is simply sitting still before the
collision, and that the hitter’s hands do not make any force large enough
to have a significant effect over the short duration of the impact.

14.4 Momentum transfer
The rate of change of momentum

As with conservation of energy, we need a way to measure and
calculate the transfer of momentum into or out of a system when the
system is not closed. In the case of energy, the answer was rather
complicated, and entirely different techniques had to be used for
measuring the transfer of mechanical energy (work) and the transfer
of heat by conduction. For momentum, the situation is far simpler.

In the simplest case, the system consists of a single object acted
on by a constant external force. Since it is only the object’s velocity
that can change, not its mass, the momentum transferred is

∆p = m∆v ,

which with the help of a = F/m and the constant-acceleration equa-
tion a = ∆v/∆t becomes

∆p = ma∆t

= F∆t .

Thus the rate of transfer of momentum, i.e., the number of kg·m/s
absorbed per second, is simply the external force,

F =
∆p

∆t
.

[relationship between the force on an object and the
rate of change of its momentum; valid only if the force
is constant]

This is just a restatement of Newton’s second law, and in fact New-
ton originally stated it this way. As shown in figure k, the rela-
tionship between force and momentum is directly analogous to that
between power and energy.

The situation is not materially altered for a system composed
of many objects. There may be forces between the objects, but the
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l / The airbag increases ∆t
so as to reduce F = ∆p/∆t .

internal forces cannot change the system’s momentum. (If they did,
then removing the external forces would result in a closed system
that could change its own momentum, like the mythical man who
could pull himself up by his own bootstraps. That would violate
conservation of momentum.) The equation above becomes

Ftotal =
∆ptotal

∆t
.

[relationship between the total external force on a sys-
tem and the rate of change of its total momentum; valid
only if the force is constant]

Walking into a lamppost example 13
. Starting from rest, you begin walking, bringing your momentum
up to 100 kg·m/s. You walk straight into a lamppost. Why is the
momentum change of −100 kg ·m/s caused by the lamppost so
much more painful than the change of +100 kg ·m/s when you
started walking?

. The situation is one-dimensional, so we can dispense with the
vector notation. It probably takes you about 1 s to speed up ini-
tially, so the ground’s force on you is F = ∆p/∆t ≈ 100 N. Your
impact with the lamppost, however, is over in the blink of an eye,
say 1/10 s or less. Dividing by this much smaller ∆t gives a much
larger force, perhaps thousands of newtons. (The negative sign
simply indicates that the force is in the opposite direction.)

This is also the principle of airbags in cars. The time required for
the airbag to decelerate your head is fairly long, the time required
for your face to travel 20 or 30 cm. Without an airbag, your face
would hit the dashboard, and the time interval would be the much
shorter time taken by your skull to move a couple of centimeters
while your face compressed. Note that either way, the same amount
of mechanical work has to be done on your head: enough to eliminate
all its kinetic energy.

Ion drive for spacecraft example 14
. The ion drive of the Deep Space 1 spacecraft, pictured on page
365 and discussed in example 2, produces a thrust of 90 mN
(millinewtons). It carries about 80 kg of reaction mass, which it
ejects at a speed of 30,000 m/s. For how long can the engine
continue supplying this amount of thrust before running out of
reaction mass to shove out the back?

. Solving the equation F = ∆p/∆t for the unknown ∆t , and treat-
ing force and momentum as scalars since the problem is one-
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m / Example 15.

n / Example 16.

dimensional, we find

∆t =
∆p
F

=
mexhaust∆vexhaust

F

=
(80 kg)(30, 000 m/s)

0.090 N
= 2.7× 107 s
= 300 days

A toppling box example 15
If you place a box on a frictionless surface, it will fall over with a
very complicated motion that is hard to predict in detail. We know,
however, that its center of mass moves in the same direction as
its momentum vector points. There are two forces, a normal force
and a gravitational force, both of which are vertical. (The grav-
itational force is actually many gravitational forces acting on all
the atoms in the box.) The total force must be vertical, so the
momentum vector must be purely vertical too, and the center of
mass travels vertically. This is true even if the box bounces and
tumbles. [Based on an example by Kleppner and Kolenkow.]

Discussion question

A Many collisions, like the collision of a bat with a baseball, appear to
be instantaneous. Most people also would not imagine the bat and ball as
bending or being compressed during the collision. Consider the following
possibilities:

1. The collision is instantaneous.

2. The collision takes a finite amount of time, during which the ball and
bat retain their shapes and remain in contact.

3. The collision takes a finite amount of time, during which the ball and
bat are bending or being compressed.

How can two of these be ruled out based on energy or momentum con-
siderations?

14.5 Momentum in three dimensions
In this section we discuss how the concepts applied previously to
one-dimensional situations can be used as well in three dimensions.
Often vector addition is all that is needed to solve a problem:

An explosion example 16

. Astronomers observe the planet Mars as the Martians fight a
nuclear war. The Martian bombs are so powerful that they rip the
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planet into three separate pieces of liquified rock, all having the
same mass. If one fragment flies off with velocity components

v1x = 0

v1y = 1.0× 104 km/hr ,

and the second with

v2x = 1.0× 104 km/hr
v2y = 0 ,

(all in the center of mass frame) what is the magnitude of the third
one’s velocity?

. In the center of mass frame, the planet initially had zero momen-
tum. After the explosion, the vector sum of the momenta must still
be zero. Vector addition can be done by adding components, so

mv1x + mv2x + mv3x = 0 , and
mv1y + mv2y + mv3y = 0 ,

where we have used the same symbol m for all the terms, be-
cause the fragments all have the same mass. The masses can
be eliminated by dividing each equation by m, and we find

v3x = −1.0× 104 km/hr

v3y = −1.0× 104 km/hr

which gives a magnitude of

|v3| =
√

v2
3x + v2

3y

= 1.4× 104 km/hr

The center of mass

In three dimensions, we have the vector equations

Ftotal =
∆ptotal

∆t

and

ptotal = mtotalvcm .

The following is an example of their use.
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o / Example 17.

The bola example 17
The bola, similar to the North American lasso, is used by South
American gauchos to catch small animals by tangling up their
legs in the three leather thongs. The motion of the whirling bola
through the air is extremely complicated, and would be a chal-
lenge to analyze mathematically. The motion of its center of
mass, however, is much simpler. The only forces on it are gravi-
tational, so

Ftotal = mtotalg .

Using the equation Ftotal = ∆ptotal/∆t , we find

∆ptotal/∆t = mtotalg ,

and since the mass is constant, the equation ptotal = mtotalvcm
allows us to change this to

mtotal∆vcm/∆t = mtotalg .

The mass cancels, and ∆vcm/∆t is simply the acceleration of the
center of mass, so

acm = g .

In other words, the motion of the system is the same as if all its
mass was concentrated at and moving with the center of mass.
The bola has a constant downward acceleration equal to g, and
flies along the same parabola as any other projectile thrown with
the same initial center of mass velocity. Throwing a bola with the
correct rotation is presumably a difficult skill, but making it hit its
target is no harder than it is with a ball or a single rock.

[Based on an example by Kleppner & Kolenkow.]

Counting equations and unknowns

Counting equations and unknowns is just as useful as in one
dimension, but every object’s momentum vector has three compo-
nents, so an unknown momentum vector counts as three unknowns.
Conservation of momentum is a single vector equation, but it says
that all three components of the total momentum vector stay con-
stant, so we count it as three equations. Of course if the motion
happens to be confined to two dimensions, then we need only count
vectors as having two components.

A two-car crash with sticking example 18
Suppose two cars collide, stick together, and skid off together. If
we know the cars’ initial momentum vectors, we can count equa-
tions and unknowns as follows:

unknown #1: x component of cars’ final, total momentum

unknown #2: y component of cars’ final, total momentum

equation #1: conservation of the total px
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p / Example 20.

equation #2: conservation of the total py

Since the number of equations equals the number of unknowns,
there must be one unique solution for their total momentum vector
after the crash. In other words, the speed and direction at which
their common center of mass moves off together is unaffected by
factors such as whether the cars collide center-to-center or catch
each other a little off-center.

Shooting pool example 19
Two pool balls collide, and as before we assume there is no de-
crease in the total kinetic energy, i.e., no energy converted from
KE into other forms. As in the previous example, we assume we
are given the initial velocities and want to find the final velocities.
The equations and unknowns are:

unknown #1: x component of ball #1’s final momentum

unknown #2: y component of ball #1’s final momentum

unknown #3: x component of ball #2’s final momentum

unknown #4: y component of ball #2’s final momentum

equation #1: conservation of the total px

equation #2: conservation of the total py

equation #3: no decrease in total KE

Note that we do not count the balls’ final kinetic energies as un-
knowns, because knowing the momentum vector, one can always
find the velocity and thus the kinetic energy. The number of equa-
tions is less than the number of unknowns, so no unique result is
guaranteed. This is what makes pool an interesting game. By
aiming the cue ball to one side of the target ball you can have
some control over the balls’ speeds and directions of motion after
the collision.

It is not possible, however, to choose any combination of final
speeds and directions. For instance, a certain shot may give the
correct direction of motion for the target ball, making it go into a
pocket, but may also have the undesired side-effect of making the
cue ball go in a pocket.

Calculations with the momentum vector

The following example illustrates how a force is required to
change the direction of the momentum vector, just as one would
be required to change its magnitude.

A turbine example 20
. In a hydroelectric plant, water flowing over a dam drives a tur-
bine, which runs a generator to make electric power. The figure
shows a simplified physical model of the water hitting the turbine,
in which it is assumed that the stream of water comes in at a
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45◦angle with respect to the turbine blade, and bounces off at a
90◦angle at nearly the same speed. The water flows at a rate R,
in units of kg/s, and the speed of the water is v . What are the
magnitude and direction of the water’s force on the turbine?

. In a time interval ∆t, the mass of water that strikes the blade is
R∆t, and the magnitude of its initial momentum is mv = vR∆t .
The water’s final momentum vector is of the same magnitude, but
in the perpendicular direction. By Newton’s third law, the water’s
force on the blade is equal and opposite to the blade’s force on
the water. Since the force is constant, we can use the equation

Fblade on water =
∆pwater

∆t
.

Choosing the x axis to be to the right and the y axis to be up, this
can be broken down into components as

Fblade on water,x =
∆pwater,x

∆t

=
−vR∆t − 0

∆t
= −vR

and

Fblade on water,y =
∆pwater,y

∆t

=
0− (−vR∆t)

∆t
= vR .

The water’s force on the blade thus has components

Fwater on blade,x = vR
Fwater on blade,y = −vR .

In situations like this, it is always a good idea to check that the
result makes sense physically. The x component of the water’s
force on the blade is positive, which is correct since we know the
blade will be pushed to the right. The y component is negative,
which also makes sense because the water must push the blade
down. The magnitude of the water’s force on the blade is

|Fwater on blade| =
√

2vR

and its direction is at a 45-degree angle down and to the right.

Discussion questions

A The figures show a jet of water striking two different objects. How
does the total downward force compare in the two cases? How could this
fact be used to create a better waterwheel? (Such a waterwheel is known
as a Pelton wheel.)
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q / The F − t graph for a
tennis racquet hitting a ball might
look like this. The amount of
momentum transferred equals
the area under the curve.

Discussion question A.

14.6 Applications of calculus
Few real collisions involve a constant force. For example, when a
tennis ball hits a racquet, the strings stretch and the ball flattens
dramatically. They are both acting like springs that obey Hooke’s
law, which says that the force is proportional to the amount of
stretching or flattening. The force is therefore small at first, ramps
up to a maximum when the ball is about to reverse directions, and
ramps back down again as the ball is on its way back out. The
equation F = ∆p/∆t, derived under the assumption of constant
acceleration, does not apply here, and the force does not even have
a single well-defined numerical value that could be plugged in to the
equation.

This is like every other situation where an equation of the form
foo = ∆bar/∆baz has to be generalized to the case where the rate of
change isn’t constant. We have F = dp/dt and, by the fundamental
theorem of calculus, ∆p =

∫
Fdt, which can be interpreted as the

area under the F − t graph, figure q.

Rain falling into a moving cart example 21
. If 1 kg/s of rain falls vertically into a 10-kg cart that is rolling
without friction at an initial speed of 1.0 m/s, what is the effect on
the speed of the cart when the rain first starts falling?

. The rain and the cart make horizontal forces on each other, but
there is no external horizontal force on the rain-plus-cart system,
so the horizontal motion obeys

F =
d(mv )

dt
= 0

We use the product rule to find

0 =
dm
dt

v + m
dv
dt

.

We are trying to find how v changes, so we solve for dv/dt ,

dv
dt

= − v
m

dm
dt

= −
(

1 m/s
10 kg

)
(1 kg/s)

= −0.1 m/s2 .
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(This is only at the moment when the rain starts to fall.)

Finally we note that there are cases where F = ma is not just
less convenient than F = dp/dt but in fact F = ma is wrong and
F = dp/dt is right. A good example is the formation of a comet’s
tail by sunlight. We cannot use F = ma to describe this process,
since we are dealing with a collision of light with matter, whereas
Newton’s laws only apply to matter. The equation F = dp/dt, on
the other hand, allows us to find the force experienced by an atom of
gas in the comet’s tail if we know the rate at which the momentum
vectors of light rays are being turned around by reflection from the
atom.

14.7 ? Relativistic momentum
How does momentum behave in relativity?

Newtonian mechanics has two different measures of motion, ki-
netic energy and momentum, and the relationship between them is
nonlinear. Doubling your car’s momentum quadruples its kinetic
energy.

But nonrelativistic mechanics can’t handle massless particles,
which are always ultrarelativistic. We saw in section 11.6 that ul-
trarelativistic particles are “generic,” in the sense that they have no
individual mechanical properties other than an energy and a direc-
tion of motion. Therefore the relationship between kinetic energy
and momentum must be linear for ultrarelativistic particles. Indeed,
experiments verify that light has momentum, and doubling the en-
ergy of a ray of light doubles its momentum rather than quadrupling
it.

How can we make sense of these energy-momentum relation-
ships, which seem to take on two completely different forms in the
limiting cases of very low and very high velocities?

The first step is realize that since mass and energy are equivalent
(section 12.4), we will get more of an apples-to-apples comparison if
we stop talking about a material object’s kinetic energy and consider
instead its total energy E, which includes a contribution from its
mass.

On a graph of p versus E, massless particles, which have E ∝ |p|,
lie on two diagonal lines that connect at the origin. If we like, we
can pick units such that the slopes of these lines are plus and minus
one. Material particles lie to the right of these lines. For example,
a car sitting in a parking lot has p = 0 and E = mc2.

Now what happens to such a graph when we change to a dif-
ferent frame or reference that is in motion relative to the original
frame? A massless particle still has to act like a massless parti-
cle, so the diagonals are simply stretched or contracted along their
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r / In the p-E plane, mass-
less particles lie on the two
diagonals, while particles with
mass lie to the right.

own lengths. A transformation that always takes a line to a line is
a linear transformation (p. 80), and if the transformation between
different frames of reference preserves the linearity of the lines p = E
and p = −E, then it’s natural to suspect that it is actually some
kind of linear transformation. By the same reasoning as on p. 89,
the transformation must be area-preserving. We then have the same
three cases to consider as in figure ai on p. 81. Case I is ruled out
because it would imply that particles keep the same energy when
we change frames. (This is what would happen if c were infinite, so
that the mass-equivalent E/c2 of a given energy was zero, and there-
fore E would be interpreted purely as the mass.) Case II can’t be
right because it doesn’t preserve the E = |p| diagonals. We are left
with case III, which establishes the following aesthetically appealing
fact: the p-E plane transforms according to exactly the same kind
of Lorentz transformation as the x-t plane. That is, (E, px, py, pz) is
a four-vector (p. 349) just like (t,x, y, z). This is a highly desirable
result. If it were not true, it would be like having to learn different
mathematical rules for different kinds of three-vectors in Newtonian
mechanics.

The only remaining issue to settle is whether the choice of units
that gives invariant 45-degree diagonals in the x-t plane is the same
as the choice of units that gives such diagonals in the p-E plane.
That is, we need to establish that the c that applies to x and t is
equal to the c′ needed for p and E, i.e., that the velocity scales of the
two graphs are matched up. This is true because in the Newtonian
limit, the total mass-energy E is essentially just the particle’s mass,
and then p/E ≈ p/m ≈ v. This establishes that the velocity scales
are matched at small velocities, which implies that they coincide for
all velocities, since a large velocity, even one approaching c, can be
built up from many small increments. (This also establishes that
the exponent n defined on p. 302 equals 1 as claimed.)

Suppose that a particle is at rest. Then it has p = 0 and mass-
energy E equal to its mass m. Therefore the inner product of its
(E, p) four-vector with itself equals m2. In other words, the “mag-
nitude” of the energy-momentum four-vector is simply equal to the
particle’s mass. If we transform into a different frame of reference,
the inner product stays the same. We can therefore always interpret
the magnitude of an energy-momentum four-vector as the mass. In
symbols,

m2 = E2 − p2 ,

or, in units with c 6= 1,

(mc2)2 = E2 − (pc)2 .

self-check A
Interpret this relationship in the case where m = 0. . Answer, p. 527

Since we already have an equation E = mγ for the energy of
a material particle in terms of its velocity, we can find a similar
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equation for the momentum:

p =
√
E2 −m2

= m
√
γ2 − 1

= m

√
1

1− v2
− 1

= mγv .

As a material particle gets closer and closer to c, its momentum
approaches infinity, so that an infinite force would be required in
order to reach c.

Light rays don’t interact example 22
We observe that when two rays of light cross paths, they continue
through one another without bouncing like material objects. This
behavior follows directly from conservation of energy-momentum.

Any two vectors can be contained in a single plane, so we can
choose our coordinates so that both rays have vanishing pz . By
choosing the state of motion of our coordinate system appropri-
ately, we can also make py = 0, so that the collision takes place
along a single line parallel to the x axis. Since only px is nonzero,
we write it simply as p. In the resulting p-E plane, there are two
possibilities: either the rays both lie along the same diagonal, or
they lie along different diagonals. If they lie along the same di-
agonal, then there can’t be a collision, because the two rays are
both moving in the same direction at the same speed c, and the
trailing one will never catch up with the leading one.

Now suppose they lie along different diagonals. We add their
energy-momentum vectors to get their total energy-momentum,
which will lie in the gray area of figure r. That is, a pair of light
rays taken as a single system act sort of like a material object
with a nonzero mass.1 By a Lorentz transformation, we can al-
ways find a frame in which this total energy-momentum vector
lies along the E axis. This is a frame in which the momenta of the
two rays cancel, and we have a symmetric head-on collision be-
tween two rays of equal energy. It is the “center-of-mass” frame,
although neither object has any mass on an individual basis. For
convenience, let’s assume that the x-y -z coordinate system was
chosen so that its origin was at rest in this frame.

Since the collision occurs along the x axis, by symmetry it is not
possible for the rays after the collision to depart from the x axis;
for if they did, then there would be nothing to determine the ori-
entation of the plane in which they emerged.2 Therefore we are
1If you construct a box out of mirrors and put some light inside, it has weight,

and theoretically even has a gravitational field! This is an example of the fact
that mass is not additive in relativity. Two objects, each with zero mass, can
have an aggregate mass that is nonzero.

2In quantum mechanics, there is a loophole here. Quantum mechanics allows
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justified in continuing to use the same px -E plane to analyze the
four-vectors of the rays after the collision.

Let each ray have energy E in the frame described above. Given
this total energy-momentum vector, how can we cook up two
energy-momentum vectors for the final state such that energy and
momentum will have been conserved? Since there is zero total
momentum, our only choice is two light rays, one with energy-
momentum vector (E , E) and one with (E ,−E). But this is exactly
the same as our initial state, except that we can arbitrarily choose
the roles of the two rays to have been interchanged. Such an in-
terchanging is only a matter of labeling, so there is no observable
sense in which the rays have collided.3

certain kinds of randomness, so that the symmetry can be broken by letting the
outgoing rays be observed in a plane with some random orientation.

3There is a second loophole here, which is that a ray of light is actually a
wave, and the wave has a property called polarization. As a mechanical anal-
ogy, consider a rope stretched taut. Side-to-side vibrations can propagate along
the rope, and these vibrations can occur in any plane that coincides with the
rope. The orientation of this plane is referred to as the polarization of the wave.
Returning to the case of the coliding light rays, it is possible to have nontrivial
collisions in the sense that the rays could affect one another’s polarizations.
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Summary
Selected vocabulary
momentum . . . a measure of motion, equal to mv for material

objects
collision . . . . . an interaction between moving objects that

lasts for a certain time
center of mass . . the balance point or average position of the

mass in a system

Notation
p . . . . . . . . . . the momentum vector
cm . . . . . . . . . center of mass, as in xcm, acm, etc.

Other terminology and notation
impulse, I, J . . the amount of momentum transferred, ∆p
elastic collision . one in which no KE is converted into other

forms of energy
inelastic collision one in which some KE is converted to other

forms of energy

Summary

If two objects interact via a force, Newton’s third law guaran-
tees that any change in one’s velocity vector will be accompanied
by a change in the other’s which is in the opposite direction. Intu-
itively, this means that if the two objects are not acted on by any
external force, they cannot cooperate to change their overall state of
motion. This can be made quantitative by saying that the quantity
m1v1 + m2v2 must remain constant as long as the only forces are
the internal ones between the two objects. This is a conservation
law, called the conservation of momentum, and like the conserva-
tion of energy, it has evolved over time to include more and more
phenomena unknown at the time the concept was invented. The
momentum of a material object is

p = mv ,

but this is more like a standard for comparison of momenta rather
than a definition. For instance, light has momentum, but has no
mass, and the above equation is not the right equation for light. The
law of conservation of momentum says that the total momentum of
any closed system, i.e., the vector sum of the momentum vectors of
all the things in the system, is a constant.

An important application of the momentum concept is to colli-
sions, i.e., interactions between moving objects that last for a certain
amount of time while the objects are in contact or near each other.
Conservation of momentum tells us that certain outcomes of a col-
lision are impossible, and in some cases may even be sufficient to
predict the motion after the collision. In other cases, conservation
of momentum does not provide enough equations to find all the un-
knowns. In some collisions, such as the collision of a superball with

388 Chapter 14 Conservation of momentum



the floor, very little kinetic energy is converted into other forms of
energy, and this provides one more equation, which may suffice to
predict the outcome.

The total momentum of a system can be related to its total mass
and the velocity of its center of mass by the equation

ptotal = mtotalvcm .

The center of mass, introduced on an intuitive basis in book 1 as
the “balance point” of an object, can be generalized to any system
containing any number of objects, and is defined mathematically
as the weighted average of the positions of all the parts of all the
objects,

xcm =
m1x1 +m2x2 + . . .

m1 +m2 + . . .
,

with similar equations for the y and z coordinates.

The frame of reference moving with the center of mass of a closed
system is always a valid inertial frame, and many problems can be
greatly simplified by working them in the inertial frame. For exam-
ple, any collision between two objects appears in the c.m. frame as
a head-on one-dimensional collision.

When a system is not closed, the rate at which momentum is
transferred in or out is simply the total force being exerted externally
on the system,

Ftotal =
dptotal

dt
.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Derive a formula expressing the kinetic energy of an object in
terms of its momentum and mass.

√

2 Two people in a rowboat wish to move around without causing
the boat to move. What should be true about their total momen-
tum? Explain.

3 A firework shoots up into the air, and just before it explodes
it has a certain momentum and kinetic energy. What can you say
about the momenta and kinetic energies of the pieces immediately
after the explosion? [Based on a problem from PSSC Physics.]

. Solution, p. 521

4 A bullet leaves the barrel of a gun with a kinetic energy of 90
J. The gun barrel is 50 cm long. The gun has a mass of 4 kg, the
bullet 10 g.
(a) Find the bullet’s final velocity.

√

(b) Find the bullet’s final momentum.
√

(c) Find the momentum of the recoiling gun.
(d) Find the kinetic energy of the recoiling gun, and explain why
the recoiling gun does not kill the shooter.

√

Problem 5

5 The graph shows the force, in meganewtons, exerted by a
rocket engine on the rocket as a function of time. If the rocket’s
mass is 4000 kg, at what speed is the rocket moving when the engine
stops firing? Assume it goes straight up, and neglect the force of
gravity, which is much less than a meganewton.

√
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Problem 8

6 Cosmic rays are particles from outer space, mostly protons and
atomic nuclei, that are continually bombarding the earth. Most of
them, although they are moving extremely fast, have no discernible
effect even if they hit your body, because their masses are so small.
Their energies vary, however, and a very small minority of them
have extremely large energies. In some cases the energy is as much
as several Joules, which is comparable to the KE of a well thrown
rock! If you are in a plane at a high altitude and are so incredibly
unlucky as to be hit by one of these rare ultra-high-energy cosmic
rays, what would you notice, the momentum imparted to your body,
the energy dissipated in your body as heat, or both? Base your con-
clusions on numerical estimates, not just random speculation. (At
these high speeds, one should really take into account the devia-
tions from Newtonian physics described by Einstein’s special theory
of relativity. Don’t worry about that, though.)

7 Show that for a body made up of many equal masses, the
equation for the center of mass becomes a simple average of all the
positions of the masses.

8 The figure shows a view from above of a collision about to
happen between two air hockey pucks sliding without friction. They
have the same speed, vi, before the collision, but the big puck is 2.3
times more massive than the small one. Their sides have sticky stuff
on them, so when they collide, they will stick together. At what
angle will they emerge from the collision? In addition to giving a
numerical answer, please indicate by drawing on the figure how your
angle is defined. . Solution, p. 521

9 A learjet traveling due east at 300 mi/hr collides with a
jumbo jet which was heading southwest at 150 mi/hr. The jumbo
jet’s mass is 5.0 times greater than that of the learjet. When they
collide, the learjet sticks into the fuselage of the jumbo jet, and they
fall to earth together. Their engines stop functioning immediately
after the collision. On a map, what will be the direction from the
location of the collision to the place where the wreckage hits the
ground? (Give an angle.)

√

10 A very massive object with velocity v collides head-on with
an object at rest whose mass is very small. No kinetic energy is
converted into other forms. Prove that the low-mass object recoils
with velocity 2v. [Hint: Use the center-of-mass frame of reference.]

11 A mass m moving at velocity v collides with a stationary
target having the same mass m. Find the maximum amount of
energy that can be released as heat and sound.

√
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12 When the contents of a refrigerator cool down, the changed
molecular speeds imply changes in both momentum and energy.
Why, then, does a fridge transfer power through its radiator coils,
but not force? . Solution, p. 521

13 A 10-kg bowling ball moving at 2.0 m/s hits a 1.0-kg bowling
pin, which is initially at rest. The other pins are all gone already,
and the collision is head-on, so that the motion is one-dimensional.
Assume that negligible amounts of heat and sound are produced.
Find the velocity of the pin immediately after the collision.

14 A ball of mass 3m collides head-on with an initially stationary
ball of mass m. No kinetic energy is transformed into heat or sound.
In what direction is the mass-3m ball moving after the collision, and
how fast is it going compared to its original velocity?

√

15 Suppose a system consisting of pointlike particles has a total
kinetic energy Kcm measured in the center-of-mass frame of refer-
ence. Since they are pointlike, they cannot have any energy due to
internal motion.
(a) Prove that in a different frame of reference, moving with veloc-
ity u relative to the center-of-mass frame, the total kinetic energy
equals Kcm +M |u|2/2, where M is the total mass. [Hint: You can
save yourself a lot of writing if you express the total kinetic energy
using the dot product.] . Solution, p. 521
(b) Use this to prove that if energy is conserved in one frame of
reference, then it is conserved in every frame of reference. The total
energy equals the total kinetic energy plus the sum of the potential
energies due to the particles’ interactions with each other, which
we assume depends only on the distance between particles. [For a
simpler numerical example, see problem 13 on p. 308.] ?

16 The big difference between the equations for momentum and
kinetic energy is that one is proportional to v and one to v2. Both,
however, are proportional to m. Suppose someone tells you that
there’s a third quantity, funkosity, defined as f = m2v, and that
funkosity is conserved. How do you know your leg is being pulled?

. Solution, p. 522
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17 A rocket ejects exhaust with an exhaust velocity u. The rate
at which the exhaust mass is used (mass per unit time) is b. We
assume that the rocket accelerates in a straight line starting from
rest, and that no external forces act on it. Let the rocket’s initial
mass (fuel plus the body and payload) be mi, and mf be its final
mass, after all the fuel is used up. (a) Find the rocket’s final velocity,
v, in terms of u, mi, and mf . Neglect the effects of special relativity.
(b) A typical exhaust velocity for chemical rocket engines is 4000
m/s. Estimate the initial mass of a rocket that could accelerate a
one-ton payload to 10% of the speed of light, and show that this
design won’t work. (For the sake of the estimate, ignore the mass of
the fuel tanks. The speed is fairly small compared to c, so it’s not
an unreasonable approximation to ignore relativity.)

√
?

18 A flexible rope of mass m and length L slides without friction
over the edge of a table. Let x be the length of the rope that is
hanging over the edge at a given moment in time.
(a) Show that x satisfies the equation of motion d2x/dt2 = gx/L.
[Hint: Use F = dp/dt, which allows you to handle the two parts of
the rope separately even though mass is moving out of one part and
into the other.]
(b) Give a physical explanation for the fact that a larger value of
x on the right-hand side of the equation leads to a greater value of
the acceleration on the left side.
(c) When we take the second derivative of the function x(t) we are
supposed to get essentially the same function back again, except
for a constant out in front. The function ex has the property that
it is unchanged by differentiation, so it is reasonable to look for
solutions to this problem that are of the form x = bect, where b and
c are constants. Show that this does indeed provide a solution for
two specific values of c (and for any value of b).
(d) Show that the sum of any two solutions to the equation of motion
is also a solution.
(e) Find the solution for the case where the rope starts at rest at
t = 0 with some nonzero value of x. ?

19 (a) Find a relativistic equation for the velocity of an object
in terms of its mass and momentum (eliminating G).

√

(b) Show that your result is approximately the same as the classical
value, p/m, at low velocities.
(c) Show that very large momenta result in speeds close to the speed
of light. ?
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A tornado touches down in Spring Hill, Kansas, May 20, 1957.

Chapter 15

Conservation of angular
momentum

“Sure, and maybe the sun won’t come up tomorrow.” Of course,
the sun only appears to go up and down because the earth spins,
so the cliche should really refer to the unlikelihood of the earth’s
stopping its rotation abruptly during the night. Why can’t it stop?
It wouldn’t violate conservation of momentum, because the earth’s
rotation doesn’t add anything to its momentum. While California
spins in one direction, some equally massive part of India goes the
opposite way, canceling its momentum. A halt to Earth’s rotation
would entail a drop in kinetic energy, but that energy could simply
be converted into some other form, such as heat.

Other examples along these lines are not hard to find. A hydro-
gen atom spins at the same rate for billions of years. A high-diver
who is rotating when he comes off the board does not need to make
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any physical effort to continue rotating, and indeed would be unable
to stop rotating before he hit the water.

These observations have the hallmarks of a conservation law:

A closed system is involved. Nothing is making an effort to
twist the earth, the hydrogen atom, or the high-diver. They are
isolated from rotation-changing influences, i.e., they are closed
systems.

Something remains unchanged. There appears to be a numer-
ical quantity for measuring rotational motion such that the total
amount of that quantity remains constant in a closed system.

Something can be transferred back and forth without
changing the total amount. In figure a, the jumper wants to
get his feet out in front of him so he can keep from doing a “face
plant” when he lands. Bringing his feet forward would involve a
certain quantity of counterclockwise rotation, but he didn’t start
out with any rotation when he left the ground. Suppose we con-
sider counterclockwise as positive and clockwise as negative. The
only way his legs can acquire some positive rotation is if some other
part of his body picks up an equal amount of negative rotation.
This is why he swings his arms up behind him, clockwise.

a / An early photograph of an old-fashioned long-jump.

What numerical measure of rotational motion is conserved? Car
engines and old-fashioned LP records have speeds of rotation mea-
sured in rotations per minute (r.p.m.), but the number of rota-
tions per minute (or per second) is not a conserved quantity. A
twirling figure skater, for instance, can pull her arms in to increase
her r.p.m.’s. The first section of this chapter deals with the nu-
merical definition of the quantity of rotation that results in a valid
conservation law.
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b / An overhead view of a
piece of putty being thrown at
a door. Even though the putty
is neither spinning nor traveling
along a curve, we must define it
as having some kind of “rotation”
because it is able to make the
door rotate.

c / As seen by someone standing
at the axis, the putty changes
its angular position. We there-
fore define it as having angular
momentum.

15.1 Conservation of angular momentum
When most people think of rotation, they think of a solid object
like a wheel rotating in a circle around a fixed point. Examples of
this type of rotation, called rigid rotation or rigid-body rotation, in-
clude a spinning top, a seated child’s swinging leg, and a helicopter’s
spinning propeller. Rotation, however, is a much more general phe-
nomenon, and includes noncircular examples such as a comet in
an elliptical orbit around the sun, or a cyclone, in which the core
completes a circle more quickly than the outer parts.

If there is a numerical measure of rotational motion that is a
conserved quantity, then it must include nonrigid cases like these,
since nonrigid rotation can be traded back and forth with rigid ro-
tation. For instance, there is a trick for finding out if an egg is
raw or hardboiled. If you spin a hardboiled egg and then stop it
briefly with your finger, it stops dead. But if you do the same with
a raw egg, it springs back into rotation because the soft interior was
still swirling around within the momentarily motionless shell. The
pattern of flow of the liquid part is presumably very complex and
nonuniform due to the asymmetric shape of the egg and the differ-
ent consistencies of the yolk and the white, but there is apparently
some way to describe the liquid’s total amount of rotation with a
single number, of which some percentage is given back to the shell
when you release it.

The best strategy is to devise a way of defining the amount of
rotation of a single small part of a system. The amount of rotation
of a system such as a cyclone will then be defined as the total of all
the contributions from its many small parts.

The quest for a conserved quantity of rotation even requires us
to broaden the rotation concept to include cases where the motion
doesn’t repeat or even curve around. If you throw a piece of putty
at a door, the door will recoil and start rotating. The putty was
traveling straight, not in a circle, but if there is to be a general
conservation law that can cover this situation, it appears that we
must describe the putty as having had some “rotation,” which it
then gave up to the door. The best way of thinking about it is to
attribute rotation to any moving object or part of an object that
changes its angle in relation to the axis of rotation. In the putty-
and-door example, the hinge of the door is the natural point to think
of as an axis, and the putty changes its angle as seen by someone
standing at the hinge. For this reason, the conserved quantity we are
investigating is called angular momentum. The symbol for angular
momentum can’t be a or m, since those are used for acceleration
and mass, so the symbol L is arbitrarily chosen instead.

Imagine a 1-kg blob of putty, thrown at the door at a speed of
1 m/s, which hits the door at a distance of 1 m from the hinge.
We define this blob to have 1 unit of angular momentum. When
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d / A putty blob thrown di-
rectly at the axis has no angular
motion, and therefore no angular
momentum. It will not cause the
door to rotate.

e / Only the component of
the velocity vector perpendicular
to the dashed line should be
counted into the definition of
angular momentum.

it hits the door, the door will recoil and start rotating. We can
use the speed at which the door recoils as a measure of the angular
momentum the blob brought in.1

Experiments show, not surprisingly, that a 2-kg blob thrown in
the same way makes the door rotate twice as fast, so the angular
momentum of the putty blob must be proportional to mass,

L ∝ m .

Similarly, experiments show that doubling the velocity of the
blob will have a doubling effect on the result, so its angular momen-
tum must be proportional to its velocity as well,

L ∝ mv .

You have undoubtedly had the experience of approaching a closed
door with one of those bar-shaped handles on it and pushing on the
wrong side, the side close to the hinges. You feel like an idiot, be-
cause you have so little leverage that you can hardly budge the door.
The same would be true with the putty blob. Experiments would
show that the amount of rotation the blob can give to the door is
proportional to the distance, r, from the axis of rotation, so angular
momentum must also be proportional to r,

L ∝ mvr .

We are almost done, but there is one missing ingredient. We
know on grounds of symmetry that a putty ball thrown directly
inward toward the hinge will have no angular momentum to give
to the door. After all, there would not even be any way to de-
cide whether the ball’s rotation was clockwise or counterclockwise
in this situation. It is therefore only the component of the blob’s
velocity vector perpendicular to the door that should be counted in
its angular momentum,

L = mv⊥r .

More generally, v⊥ should be thought of as the component of the
object’s velocity vector that is perpendicular to the line joining the
object to the axis of rotation.

We find that this equation agrees with the definition of the origi-
nal putty blob as having one unit of angular momentum, and we can
now see that the units of angular momentum are (kg·m/s)·m, i.e.,
kg·m2/s. This gives us a way of calculating the angular momentum
of any material object or any system consisting of material objects:

1We assume that the door is much more massive than the blob. Under this
assumption, the speed at which the door recoils is much less than the original
speed of the blob, so the blob has lost essentially all its angular momentum, and
given it to the door.
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f / A figure skater pulls in her
arms so that she can execute a
spin more rapidly.

angular momentum of a material object
The angular momentum of a moving particle is

L = mv⊥r ,

where m is its mass, v⊥ is the component of its velocity vector
perpendicular to the line joining it to the axis of rotation, and r is
its distance from the axis. Positive and negative signs are used to
describe opposite directions of rotation.

The angular momentum of a finite-sized object or a system
of many objects is found by dividing it up into many small parts,
applying the equation to each part, and adding to find the total
amount of angular momentum.

Note that r is not necessarily the radius of a circle. (As implied
by the qualifiers, matter isn’t the only thing that can have angular
momentum. Light can also have angular momentum, and the above
equation would not apply to light.)

Conservation of angular momentum has been verified over and
over again by experiment, and is now believed to be one of the three
most fundamental principles of physics, along with conservation of
energy and momentum.

A figure skater pulls her arms in example 1
When a figure skater is twirling, there is very little friction between
her and the ice, so she is essentially a closed system, and her
angular momentum is conserved. If she pulls her arms in, she is
decreasing r for all the atoms in her arms. It would violate con-
servation of angular momentum if she then continued rotating at
the same speed, i.e., taking the same amount of time for each
revolution, because her arms’ contributions to her angular mo-
mentum would have decreased, and no other part of her would
have increased its angular momentum. This is impossible be-
cause it would violate conservation of angular momentum. If her
total angular momentum is to remain constant, the decrease in r
for her arms must be compensated for by an overall increase in
her rate of rotation. That is, by pulling her arms in, she substan-
tially reduces the time for each rotation.
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h / Example 3. A view of the
earth-moon system from above
the north pole. All distances
have been highly distorted for
legibility. The earth’s rotation is
counterclockwise from this point
of view (arrow). The moon’s grav-
ity creates a bulge on the side
near it, because its gravitational
pull is stronger there, and an
“anti-bulge” on the far side, since
its gravity there is weaker. For
simplicity, let’s focus on the tidal
bulge closer to the moon. Its
frictional force is trying to slow
down the earth’s rotation, so its
force on the earth’s solid crust is
toward the bottom of the figure.
By Newton’s third law, the crust
must thus make a force on the
bulge which is toward the top of
the figure. This causes the bulge
to be pulled forward at a slight
angle, and the bulge’s gravity
therefore pulls the moon forward,
accelerating its orbital motion
about the earth and flinging it
outward.

g / Example 2.

Changing the axis example 2
An object’s angular momentum can be different depending on the
axis about which it rotates. Figure g shows shows two double-
exposure photographs a viola player tipping the bow in order to
cross from one string to another. Much more angular momentum
is required when playing near the bow’s handle, called the frog,
as in the panel on the right; not only are most of the atoms in the
bow at greater distances, r , from the axis of rotation, but the ones
in the tip also have more momentum, p. It is difficult for the player
to quickly transfer a large angular momentum into the bow, and
then transfer it back out just as quickly. (In the language of section
15.4, large torques are required.) This is one of the reasons that
string players tend to stay near the middle of the bow as much as
possible.

Earth’s slowing rotation and the receding moon example 3
As noted in chapter 1, the earth’s rotation is actually slowing down
very gradually, with the kinetic energy being dissipated as heat by
friction between the land and the tidal bulges raised in the seas
by the earth’s gravity. Does this mean that angular momentum is
not really perfectly conserved? No, it just means that the earth
is not quite a closed system by itself. If we consider the earth
and moon as a system, then the angular momentum lost by the
earth must be gained by the moon somehow. In fact very precise
measurements of the distance between the earth and the moon
have been carried out by bouncing laser beams off of a mirror
left there by astronauts, and these measurements show that the
moon is receding from the earth at a rate of 4 centimeters per
year! The moon’s greater value of r means that it has a greater
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angular momentum, and the increase turns out to be exactly the
amount lost by the earth. In the days of the dinosaurs, the days
were significantly shorter, and the moon was closer and appeared
bigger in the sky.

But what force is causing the moon to speed up, drawing it out
into a larger orbit? It is the gravitational forces of the earth’s tidal
bulges. The effect is described qualitatively in the caption of the
figure. The result would obviously be extremely difficult to calcu-
late directly, and this is one of those situations where a conserva-
tion law allows us to make precise quantitative statements about
the outcome of a process when the calculation of the process
itself would be prohibitively complex.

Restriction to rotation in a plane

Is angular momentum a vector, or a scalar? It does have a
direction in space, but it’s a direction of rotation, not a straight-
line direction like the directions of vectors such as velocity or force.
It turns out (see problem 25) that there is a way of defining an-
gular momentum as a vector, but until section 15.8 the examples
will be confined to a single plane of rotation, i.e., effectively two-
dimensional situations. In this special case, we can choose to visu-
alize the plane of rotation from one side or the other, and to define
clockwise and counterclockwise rotation as having opposite signs of
angular momentum.

Discussion question

A Conservation of plain old momentum, p, can be thought of as the
greatly expanded and modified descendant of Galileo’s original principle
of inertia, that no force is required to keep an object in motion. The princi-
ple of inertia is counterintuitive, and there are many situations in which it
appears superficially that a force is needed to maintain motion, as main-
tained by Aristotle. Think of a situation in which conservation of angular
momentum, L, also seems to be violated, making it seem incorrectly that
something external must act on a closed system to keep its angular mo-
mentum from “running down.”

15.2 Angular momentum in planetary motion
We now discuss the application of conservation of angular momen-
tum to planetary motion, both because of its intrinsic importance
and because it is a good way to develop a visual intuition for angular
momentum.

Kepler’s law of equal areas states that the area swept out by
a planet in a certain length of time is always the same. Angular
momentum had not been invented in Kepler’s time, and he did not
even know the most basic physical facts about the forces at work. He
thought of this law as an entirely empirical and unexpectedly simple
way of summarizing his data, a rule that succeeded in describing
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i / The planet’s angular mo-
mentum is related to the rate at
which it sweeps out area.

and predicting how the planets sped up and slowed down in their
elliptical paths. It is now fairly simple, however, to show that the
equal area law amounts to a statement that the planet’s angular
momentum stays constant.

There is no simple geometrical rule for the area of a pie wedge
cut out of an ellipse, but if we consider a very short time interval,
as shown in figure i, the shaded shape swept out by the planet is
very nearly a triangle. We do know how to compute the area of a
triangle. It is one half the product of the base and the height:

area =
1

2
bh .

We wish to relate this to angular momentum, which contains
the variables r and v⊥ . If we consider the sun to be the axis of
rotation, then the variable r is identical to the base of the triangle,
r = b. Referring to the magnified portion of the figure, v⊥ can be
related to h, because the two right triangles are similar:

h

distance traveled
=
v⊥
|v|

The area can thus be rewritten as

area =
1

2
r
v⊥(distance traveled)

|v|
.

The distance traveled equals |v|∆t, so this simplifies to

area =
1

2
rv⊥∆t .

We have found the following relationship between angular momen-
tum and the rate at which area is swept out:

L = 2m
area

∆t
.

The factor of 2 in front is simply a matter of convention, since any
conserved quantity would be an equally valid conserved quantity if
you multiplied it by a constant. The factor of m was not relevant
to Kepler, who did not know the planets’ masses, and who was only
describing the motion of one planet at a time.

We thus find that Kepler’s equal-area law is equivalent to a state-
ment that the planet’s angular momentum remains constant. But
wait, why should it remain constant? — the planet is not a closed
system, since it is being acted on by the sun’s gravitational force.
There are two valid answers. The first is that it is actually the to-
tal angular momentum of the sun plus the planet that is conserved.
The sun, however, is millions of times more massive than the typical
planet, so it accelerates very little in response to the planet’s gravi-
tational force. It is thus a good approximation to say that the sun
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Discussion question A.

doesn’t move at all, so that no angular momentum is transferred
between it and the planet.

The second answer is that to change the planet’s angular mo-
mentum requires not just a force but a force applied in a certain
way. In section 15.4 we discuss the transfer of angular momentum
by a force, but the basic idea here is that a force directly in toward
the axis does not change the angular momentum.

Discussion questions

A Suppose an object is simply traveling in a straight line at constant
speed. If we pick some point not on the line and call it the axis of rotation,
is area swept out by the object at a constant rate? Would it matter if we
chose a different axis?

B The figure is a strobe photo of a pendulum bob, taken from under-
neath the pendulum looking straight up. The black string can’t be seen
in the photograph. The bob was given a slight sideways push when it
was released, so it did not swing in a plane. The bright spot marks the
center, i.e., the position the bob would have if it hung straight down at us.
Does the bob’s angular momentum appear to remain constant if we con-
sider the center to be the axis of rotation? What if we choose a different
axis?

Discussion question B.

15.3 Two theorems about angular momentum
With plain old momentum, p, we had the freedom to work in any
inertial frame of reference we liked. The same object could have
different values of momentum in two different frames, if the frames
were not at rest with respect to each other. Conservation of mo-
mentum, however, would be true in either frame. As long as we
employed a single frame consistently throughout a calculation, ev-
erything would work.

The same is true for angular momentum, and in addition there
is an ambiguity that arises from the definition of an axis of rotation.
For a wheel, the natural choice of an axis of rotation is obviously
the axle, but what about an egg rotating on its side? The egg
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j / Example 4.

k / Everyone has a strong
tendency to think of the diver as
rotating about his own center of
mass. However, he is flying in
an arc, and he also has angular
momentum because of this
motion.

l / This rigid object has angu-
lar momentum both because it is
spinning about its center of mass
and because it is moving through
space.

has an asymmetric shape, and thus no clearly defined geometric
center. A similar issue arises for a cyclone, which does not even
have a sharply defined shape, or for a complicated machine with
many gears. The following theorem, the first of two presented in
this section without proof, explains how to deal with this issue.
Although I have put descriptive titles above both theorems, they
have no generally accepted names.

the choice of axis theorem
It is entirely arbitrary what point one defines as the axis for
purposes of calculating angular momentum. If a closed sys-
tem’s angular momentum is conserved when calculated with
one choice of axis, then it will also be conserved for any other
choice. Likewise, any inertial frame of reference may be used.

Colliding asteroids described with different axes example 4
Observers on planets A and B both see the two asteroids collid-
ing. The asteroids are of equal mass and their impact speeds are
the same. Astronomers on each planet decide to define their own
planet as the axis of rotation. Planet A is twice as far from the col-
lision as planet B. The asteroids collide and stick. For simplicity,
assume planets A and B are both at rest.

With planet A as the axis, the two asteroids have the same amount
of angular momentum, but one has positive angular momentum
and the other has negative. Before the collision, the total angular
momentum is therefore zero. After the collision, the two asteroids
will have stopped moving, and again the total angular momen-
tum is zero. The total angular momentum both before and after
the collision is zero, so angular momentum is conserved if you
choose planet A as the axis.

The only difference with planet B as axis is that r is smaller by a
factor of two, so all the angular momenta are halved. Even though
the angular momenta are different than the ones calculated by
planet A, angular momentum is still conserved.

The earth spins on its own axis once a day, but simultaneously
travels in its circular one-year orbit around the sun, so any given
part of it traces out a complicated loopy path. It would seem difficult
to calculate the earth’s angular momentum, but it turns out that
there is an intuitively appealing shortcut: we can simply add up the
angular momentum due to its spin plus that arising from its center
of mass’s circular motion around the sun. This is a special case of
the following general theorem:

the spin theorem
An object’s angular momentum with respect to some outside
axis A can be found by adding up two parts:
(1) The first part is the object’s angular momentum found
by using its own center of mass as the axis, i.e., the angular
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m / Energy, momentum, and
angular momentum can be trans-
ferred. The rates of transfer are
called power, force, and torque.

momentum the object has because it is spinning.
(2) The other part equals the angular momentum that the
object would have with respect to the axis A if it had all its
mass concentrated at and moving with its center of mass.

A system with its center of mass at rest example 5
In the special case of an object whose center of mass is at rest,
the spin theorem implies that the object’s angular momentum is
the same regardless of what axis we choose. (This is an even
stronger statement than the choice of axis theorem, which only
guarantees that angular momentum is conserved for any given
choice of axis, without specifying that it is the same for all such
choices.)

Discussion question

A In the example of the colliding asteroids, suppose planet A was mov-
ing toward the top of the page, at the same speed as the bottom asteroid.
How would planet A’s astronomers describe the angular momenta of the
asteroids? Would angular momentum still be conserved?

15.4 Torque: the rate of transfer of angular
momentum

Force can be interpreted as the rate of transfer of momentum. The
equivalent in the case of angular momentum is called torque (rhymes
with “fork”). Where force tells us how hard we are pushing or
pulling on something, torque indicates how hard we are twisting on
it. Torque is represented by the Greek letter tau, τ , and the rate
of change of an object’s angular momentum equals the total torque
acting on it,

τtotal =
∆L

∆t
.

(If the angular momentum does not change at a constant rate, the
total torque equals the slope of the tangent line on a graph of L
versus t.)

As with force and momentum, it often happens that angular
momentum recedes into the background and we focus our interest on
the torques. The torque-focused point of view is exemplified by the
fact that many scientifically untrained but mechanically apt people
know all about torque, but none of them have heard of angular
momentum. Car enthusiasts eagerly compare engines’ torques, and
there is a tool called a torque wrench which allows one to apply a
desired amount of torque to a screw and avoid overtightening it.

Torque distinguished from force

Of course a force is necessary in order to create a torque — you
can’t twist a screw without pushing on the wrench — but force and
torque are two different things. One distinction between them is
direction. We use positive and negative signs to represent forces in
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n / The plane’s four engines
produce zero total torque but not
zero total force.

o / The simple physical situa-
tion we use to derive an equation
for torque. A force that points
directly in at or out away from the
axis produces neither clockwise
nor counterclockwise angular
momentum. A force in the per-
pendicular direction does transfer
angular momentum.

the two possible directions along a line. The direction of a torque,
however, is clockwise or counterclockwise, not a linear direction.

The other difference between torque and force is a matter of
leverage. A given force applied at a door’s knob will change the
door’s angular momentum twice as rapidly as the same force applied
halfway between the knob and the hinge. The same amount of force
produces different amounts of torque in these two cases.

It is possible to have a zero total torque with a nonzero total
force. An airplane with four jet engines, n, would be designed so
that their forces are balanced on the left and right. Their forces are
all in the same direction, but the clockwise torques of two of the
engines are canceled by the counterclockwise torques of the other
two, giving zero total torque.

Conversely we can have zero total force and nonzero total torque.
A merry-go-round’s engine needs to supply a nonzero torque on it
to bring it up to speed, but there is zero total force on it. If there
was not zero total force on it, its center of mass would accelerate!

Relationship between force and torque

How do we calculate the amount of torque produced by a given
force? Since it depends on leverage, we should expect it to depend
on the distance between the axis and the point of application of
the force. We’ll derive an equation relating torque to force for a
particular very simple situation, and state without proof that the
equation actually applies to all situations.

Consider a pointlike object which is initially at rest at a distance
r from the axis we have chosen for defining angular momentum.
We first observe that a force directly inward or outward, along the
line connecting the axis to the object, does not impart any angular
momentum to the object.

A force perpendicular to the line connecting the axis and the
object does, however, make the object pick up angular momentum.
Newton’s second law gives

a =
F

m
,

and assuming for simplicity that the force is constant, the constant
acceleration equation a = ∆v/∆t allows us to find the velocity the
object acquires after a time ∆t,

∆v =
F∆t

m
.
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p / The geometric relationships
referred to in the relationship
between force and torque.

We are trying to relate force to a change in angular momentum, so
we multiply both sides of the equation by mr to give

m∆vr = F∆tr

∆L = F∆tr .

Dividing by ∆t gives the torque:

∆L

∆t
= Fr

τ = Fr .

If a force acts at an angle other than 0 or 90◦with respect to the line
joining the object and the axis, it would be only the component of
the force perpendicular to the line that would produce a torque,

τ = F⊥r .

Although this result was proved under a simplified set of circum-
stances, it is more generally valid:

relationship between force and torque
The rate at which a force transfers angular momentum to an
object, i.e., the torque produced by the force, is given by

|τ | = r|F⊥| ,

where r is the distance from the axis to the point of applica-
tion of the force, and F⊥ is the component of the force that
is perpendicular to the line joining the axis to the point of
application.

The equation is stated with absolute value signs because the
positive and negative signs of force and torque indicate different
things, so there is no useful relationship between them. The sign
of the torque must be found by physical inspection of the case at
hand.

From the equation, we see that the units of torque can be writ-
ten as newtons multiplied by meters. Metric torque wrenches are
calibrated in N·m, but American ones use foot-pounds, which is also
a unit of distance multiplied by a unit of force. We know from our
study of mechanical work that newtons multiplied by meters equal
joules, but torque is a completely different quantity from work, and
nobody writes torques with units of joules, even though it would be
technically correct.

self-check A
Compare the magnitudes and signs of the four torques shown in the
figure. . Answer, p. 527
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q / The quantity r⊥.

How torque depends on the direction of the force example 6
. How can the torque applied to the wrench in the figure be ex-
pressed in terms of r , |F |, and the angle θ?

. The force vector and its F⊥ component form the hypotenuse
and one leg of a right triangle,

and the interior angle opposite to F⊥ equals θ. The absolute value
of F⊥ can thus be expressed as

F⊥ = |F| sin θ ,

leading to
|τ| = r |F| sin θ .

Sometimes torque can be more neatly visualized in terms of the
quantity r⊥ shown in figure q, which gives us a third way of express-
ing the relationship between torque and force:

|τ | = r⊥|F| .

Of course you would not want to go and memorize all three
equations for torque. Starting from any one of them you could easily
derive the other two using trigonometry. Familiarizing yourself with
them can however clue you in to easier avenues of attack on certain
problems.

The torque due to gravity

Up until now we’ve been thinking in terms of a force that acts
at a single point on an object, such as the force of your hand on the
wrench. This is of course an approximation, and for an extremely
realistic calculation of your hand’s torque on the wrench you might
need to add up the torques exerted by each square millimeter where
your skin touches the wrench. This is seldom necessary. But in
the case of a gravitational force, there is never any single point at
which the force is applied. Our planet is exerting a separate tug on
every brick in the Leaning Tower of Pisa, and the total gravitational
torque on the tower is the sum of the torques contributed by all the
little forces. Luckily there is a trick that allows us to avoid such
a massive calculation. It turns out that for purposes of computing
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r / Example 7.

s / Example 8.

the total gravitational torque on an object, you can get the right
answer by just pretending that the whole gravitational force acts at
the object’s center of mass.

Gravitational torque on an outstretched arm example 7
. Your arm has a mass of 3.0 kg, and its center of mass is 30
cm from your shoulder. What is the gravitational torque on your
arm when it is stretched out horizontally to one side, taking the
shoulder to be the axis?

. The total gravitational force acting on your arm is

|F | = (3.0 kg)(9.8 m/s2) = 29 N .

For the purpose of calculating the gravitational torque, we can
treat the force as if it acted at the arm’s center of mass. The force
is straight down, which is perpendicular to the line connecting the
shoulder to the center of mass, so

F⊥ = |F | = 29 N .

Continuing to pretend that the force acts at the center of the arm,
r equals 30 cm = 0.30 m, so the torque is

τ = rF⊥ = 9 N·m .

Cow tipping example 8
In 2005, Dr. Margo Lillie and her graduate student Tracy Boech-
ler published a study claiming to debunk cow tipping. Their claim
was based on an analysis of the torques that would be required
to tip a cow, which showed that one person wouldn’t be able to
make enough torque to do it. A lively discussion ensued on the
popular web site slashdot.org (“news for nerds, stuff that mat-
ters”) concerning the validity of the study. Personally, I had al-
ways assumed that cow-tipping was a group sport anyway, but as
a physicist, I also had some quibbles with their calculation. Here’s
my own analysis.

There are three forces on the cow: the force of gravity FW , the
ground’s normal force FN , and the tippers’ force FA.

As soon as the cow’s left hooves (on the right from our point of
view) break contact with the ground, the ground’s force is being
applied only to hooves on the other side. We don’t know the
ground’s force, and we don’t want to find it. Therefore we take
the axis to be at its point of application, so that its torque is zero.

For the purpose of computing torques, we can pretend that gravity
acts at the cow’s center of mass, which I’ve placed a little lower
than the center of its torso, since its legs and head also have
some mass, and the legs are more massive than the head and
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stick out farther, so they lower the c.m. more than the head raises
it. The angle θW between the vertical gravitational force and the
line rW is about 14◦. (An estimate by Matt Semke at the University
of Nebraska-Lincoln gives 20◦, which is in the same ballpark.)

To generate the maximum possible torque with the least possible
force, the tippers want to push at a point as far as possible from
the axis, which will be the shoulder on the other side, and they
want to push at a 90 degree angle with respect to the radius line
rA.

When the tippers are just barely applying enough force to raise
the cow’s hooves on one side, the total torque has to be just
slightly more than zero. (In reality, they want to push a lot harder
than this — hard enough to impart a lot of angular momentum to
the cow fair in a short time, before it gets mad and hurts them.
We’re just trying to calculate the bare minimum force they can
possibly use, which is the question that science can answer.) Set-
ting the total torque equal to zero,

τN + τW + τA = 0 ,

and letting counterclockwise torques be positive, we have

0−mgrW sin θW + FArA sin 90◦ = 0

FA =
rW

rA
mg sin θW

≈ 1
1.5

(680 kg)(9.8 m/s2) sin 14◦

= 1100 N .

The 680 kg figure for the typical mass of a cow is due to Lillie
and Boechler, who are veterinarians, so I assume it’s fairly accu-
rate. My estimate of 1100 N comes out significantly lower than
their 1400 N figure, mainly because their incorrect placement of
the center of mass gives θW = 24◦. I don’t think 1100 N is an
impossible amount of force to require of one big, strong person
(it’s equivalent to lifting about 110 kg, or 240 pounds), but given
that the tippers need to impart a large angular momentum fairly
quickly, it’s probably true that several people would be required.

The main practical issue with cow tipping is that cows generally
sleep lying down. Falling on its side can also seriously injure a
cow.
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Discussion question B.

Discussion question E.

Discussion questions

A This series of discussion questions deals with past students’ incorrect
reasoning about the following problem.

Suppose a comet is at the point in its orbit shown in the figure. The
only force on the comet is the sun’s gravitational force.

Throughout the question, define all torques and angular momenta
using the sun as the axis.

(1) Is the sun producing a nonzero torque on the comet? Explain.
(2) Is the comet’s angular momentum increasing, decreasing, or
staying the same? Explain.

Explain what is wrong with the following answers. In some cases, the an-
swer is correct, but the reasoning leading up to it is wrong. (a) Incorrect
answer to part (1): “Yes, because the sun is exerting a force on the comet,
and the comet is a certain distance from the sun.”
(b) Incorrect answer to part (1): “No, because the torques cancel out.”
(c) Incorrect answer to part (2): “Increasing, because the comet is speed-
ing up.”

B Which claw hammer would make it easier to get the nail out of the
wood if the same force was applied in the same direction?

C You whirl a rock over your head on the end of a string, and gradually
pull in the string, eventually cutting the radius in half. What happens to
the rock’s angular momentum? What changes occur in its speed, the time
required for one revolution, and its acceleration? Why might the string
break?

D A helicopter has, in addition to the huge fan blades on top, a smaller
propeller mounted on the tail that rotates in a vertical plane. Why?

E The photo shows an amusement park ride whose two cars rotate in
opposite directions. Why is this a good design?
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t / The windmills are not closed
systems, but angular momentum
is being transferred out of them
at the same rate it is transferred
in, resulting in constant angular
momentum. To get an idea of
the huge scale of the modern
windmill farm, note the sizes of
the trucks and trailers.

15.5 Statics
Equilibrium

There are many cases where a system is not closed but maintains
constant angular momentum. When a merry-go-round is running at
constant angular momentum, the engine’s torque is being canceled
by the torque due to friction.

When an object has constant momentum and constant angular
momentum, we say that it is in equilibrium. This is a scientific
redefinition of the common English word, since in ordinary speech
nobody would describe a car spinning out on an icy road as being
in equilibrium.

Very commonly, however, we are interested in cases where an ob-
ject is not only in equilibrium but also at rest, and this corresponds
more closely to the usual meaning of the word. Trees and bridges
have been designed by evolution and engineers to stay at rest, and
to do so they must have not just zero total force acting on them but
zero total torque. It is not enough that they don’t fall down, they
also must not tip over. Statics is the branch of physics concerned
with problems such as these.

Solving statics problems is now simply a matter of applying and
combining some things you already know:

• You know the behaviors of the various types of forces, for
example that a frictional force is always parallel to the surface
of contact.

• You know about vector addition of forces. It is the vector sum
of the forces that must equal zero to produce equilibrium.

• You know about torque. The total torque acting on an object
must be zero if it is to be in equilibrium.

• You know that the choice of axis is arbitrary, so you can make
a choice of axis that makes the problem easy to solve.

In general, this type of problem could involve four equations in four
unknowns: three equations that say the force components add up
to zero, and one equation that says the total torque is zero. Most
cases you’ll encounter will not be this complicated. In the following
example, only the equation for zero total torque is required in order
to get an answer.
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u / Example 9.

A flagpole example 9
. A 10-kg flagpole is being held up by a lightweight horizontal
cable, and is propped against the foot of a wall as shown in the
figure. If the cable is only capable of supporting a tension of 70
N, how great can the angle α be without breaking the cable?

. All three objects in the figure are supposed to be in equilibrium:
the pole, the cable, and the wall. Whichever of the three objects
we pick to investigate, all the forces and torques on it have to
cancel out. It is not particularly helpful to analyze the forces and
torques on the wall, since it has forces on it from the ground that
are not given and that we don’t want to find. We could study the
forces and torques on the cable, but that doesn’t let us use the
given information about the pole. The object we need to analyze
is the pole.

The pole has three forces on it, each of which may also result in
a torque: (1) the gravitational force, (2) the cable’s force, and (3)
the wall’s force.

We are free to define an axis of rotation at any point we wish, and
it is helpful to define it to lie at the bottom end of the pole, since
by that definition the wall’s force on the pole is applied at r = 0
and thus makes no torque on the pole. This is good, because we
don’t know what the wall’s force on the pole is, and we are not
trying to find it.

With this choice of axis, there are two nonzero torques on the
pole, a counterclockwise torque from the cable and a clockwise
torque from gravity. Choosing to represent counterclockwise torques
as positive numbers, and using the equation |τ| = r |F | sin θ, we
have

rcable|Fcable| sin θcable − rgrav |Fgrav | sin θgrav = 0 .

A little geometry gives θcable = 90◦ − α and θgrav = α, so

rcable|Fcable| sin(90◦ − α)− rgrav |Fgrav | sinα = 0 .

The gravitational force can be considered as acting at the pole’s
center of mass, i.e., at its geometrical center, so rcable is twice
rgrav , and we can simplify the equation to read

2|Fcable| sin(90◦ − α)− |Fgrav | sinα = 0 .

These are all quantities we were given, except for α, which is the
angle we want to find. To solve for α we need to use the trig
identity sin(90◦ − x) = cos x ,

2|Fcable| cosα− |Fgrav | sinα = 0 ,
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v / Example 10.

which allows us to find

tanα = 2
|Fcable|
|Fgrav |

α = tan−1
(

2
|Fcable|
|Fgrav |

)
= tan−1

(
2× 70 N

98 N

)
= 55◦ .

Art! example 10
. The abstract sculpture shown in figure v contains a cube of
mass m and sides of length b. The cube rests on top of a cylinder,
which is off-center by a distance a. Find the tension in the cable.

. There are four forces on the cube: a gravitational force mg, the
force FT from the cable, the upward normal force from the cylin-
der, FN , and the horizontal static frictional force from the cylinder,
Fs.

The total force on the cube in the vertical direction is zero:

FN −mg = 0 .

As our axis for defining torques, it’s convenient to choose the point
of contact between the cube and the cylinder, because then nei-
ther Fs nor FN makes any torque. The cable’s torque is counter-
clockwise, the torque due to gravity is clockwise. Letting counter-
clockwise torques be positive, and using the convenient equation
τ = r⊥F , we find the equation for the total torque:

bFT −mga = 0 .

We could also write down the equation saying that the total hori-
zontal force is zero, but that would bring in the cylinder’s frictional
force on the cube, which we don’t know and don’t need to find. We
already have two equations in the two unknowns FT and FN , so
there’s no need to make it into three equations in three unknowns.
Solving the first equation for FN = mg, we then substitute into the
second equation to eliminate FN , and solve for FT = (a/b)mg.

As a check, our result makes sense when a = 0; the cube is
balanced on the cylinder, so the cable goes slack.
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w / Stable and unstable equi-
libria.

x / The dancer’s equilibrium
is unstable. If she didn’t con-
stantly make tiny adjustments,
she would tip over.

y / Example 11.

Stable and unstable equilibria

A pencil balanced upright on its tip could theoretically be in
equilibrium, but even if it was initially perfectly balanced, it would
topple in response to the first air current or vibration from a pass-
ing truck. The pencil can be put in equilibrium, but not in stable
equilibrium. The things around us that we really do see staying still
are all in stable equilibrium.

Why is one equilibrium stable and another unstable? Try push-
ing your own nose to the left or the right. If you push it a millimeter
to the left, your head responds with a gentle force to the right, which
keeps your nose from flying off of your face. If you push your nose a
centimeter to the left, your face’s force on your nose becomes much
stronger. The defining characteristic of a stable equilibrium is that
the farther the object is moved away from equilibrium, the stronger
the force is that tries to bring it back.

The opposite is true for an unstable equilibrium. In the top
figure, the ball resting on the round hill theoretically has zero total
force on it when it is exactly at the top. But in reality the total
force will not be exactly zero, and the ball will begin to move off to
one side. Once it has moved, the net force on the ball is greater than
it was, and it accelerates more rapidly. In an unstable equilibrium,
the farther the object gets from equilibrium, the stronger the force
that pushes it farther from equilibrium.

This idea can be rephrased in terms of energy. The difference
between the stable and unstable equilibria shown in figure w is that
in the stable equilibrium, the potential energy is at a minimum, and
moving to either side of equilibrium will increase it, whereas the
unstable equilibrium represents a maximum.

Note that we are using the term “stable” in a weaker sense than
in ordinary speech. A domino standing upright is stable in the sense
we are using, since it will not spontaneously fall over in response to
a sneeze from across the room or the vibration from a passing truck.
We would only call it unstable in the technical sense if it could be
toppled by any force, no matter how small. In everyday usage, of
course, it would be considered unstable, since the force required to
topple it is so small.

An application of calculus example 11
. Nancy Neutron is living in a uranium nucleus that is undergoing
fission. Nancy’s potential energy as a function of position can be
approximated by PE = x4 − x2, where all the units and numeri-
cal constants have been suppressed for simplicity. Use calculus
to locate the equilibrium points, and determine whether they are
stable or unstable.

. The equilibrium points occur where the PE is at a minimum or
maximum, and minima and maxima occur where the derivative

Section 15.5 Statics 415



z / The biceps muscle flexes
the arm.

aa / The triceps extends the
arm.

(which equals minus the force on Nancy) is zero. This deriva-
tive is dPE/dx = 4x3 − 2x , and setting it equal to zero, we have
x = 0,±1/

√
2. Minima occur where the second derivative is pos-

itive, and maxima where it is negative. The second derivative
is 12x2 − 2, which is negative at x = 0 (unstable) and positive at
x = ±1/

√
2 (stable). Interpretation: the graph of the PE is shaped

like a rounded letter ‘W,’ with the two troughs representing the two
halves of the splitting nucleus. Nancy is going to have to decide
which half she wants to go with.

15.6 Simple machines: the lever
Although we have discussed some simple machines such as the pul-
ley, without the concept of torque we were not yet ready to ad-
dress the lever, which is the machine nature used in designing living
things, almost to the exclusion of all others. (We can speculate what
life on our planet might have been like if living things had evolved
wheels, gears, pulleys, and screws.) The figures show two examples
of levers within your arm. Different muscles are used to flex and
extend the arm, because muscles work only by contraction.

Analyzing example z physically, there are two forces that do
work. When we lift a load with our biceps muscle, the muscle does
positive work, because it brings the bone in the forearm in the direc-
tion it is moving. The load’s force on the arm does negative work,
because the arm moves in the direction opposite to the load’s force.
This makes sense, because we expect our arm to do positive work on
the load, so the load must do an equal amount of negative work on
the arm. (If the biceps was lowering a load, the signs of the works
would be reversed. Any muscle is capable of doing either positive
or negative work.)

There is also a third force on the forearm: the force of the upper
arm’s bone exerted on the forearm at the elbow joint (not shown
with an arrow in the figure). This force does no work, because the
elbow joint is not moving.

Because the elbow joint is motionless, it is natural to define our
torques using the joint as the axis. The situation now becomes
quite simple, because the upper arm bone’s force exerted at the
elbow neither does work nor creates a torque. We can ignore it
completely. In any lever there is such a point, called the fulcrum.

If we restrict ourselves to the case in which the forearm rotates
with constant angular momentum, then we know that the total
torque on the forearm is zero,

τmuscle + τload = 0 .

If we choose to represent counterclockwise torques as positive, then
the muscle’s torque is positive, and the load’s is negative. In terms
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of their absolute values,

|τmuscle| = |τload| .

Assuming for simplicity that both forces act at angles of 90◦with
respect to the lines connecting the axis to the points at which they
act, the absolute values of the torques are

rmuscleFmuscle = rloadFarm ,

where rmuscle, the distance from the elbow joint to the biceps’ point
of insertion on the forearm, is only a few cm, while rload might be 30
cm or so. The force exerted by the muscle must therefore be about
ten times the force exerted by the load. We thus see that this lever
is a force reducer. In general, a lever may be used either to increase
or to reduce a force.

Why did our arms evolve so as to reduce force? In general,
your body is built for compactness and maximum speed of motion
rather than maximum force. This is the main anatomical difference
between us and the Neanderthals (their brains covered the same
range of sizes as those of modern humans), and it seems to have
worked for us.

As with all machines, the lever is incapable of changing the
amount of mechanical work we can do. A lever that increases force
will always reduce motion, and vice versa, leaving the amount of
work unchanged.

It is worth noting how simple and yet how powerful this analysis
was. It was simple because we were well prepared with the concepts
of torque and mechanical work. In anatomy textbooks, whose read-
ers are assumed not to know physics, there is usually a long and
complicated discussion of the different types of levers. For example,
the biceps lever, z, would be classified as a class III lever, since it
has the fulcrum and load on the ends and the muscle’s force acting
in the middle. The triceps, aa, is called a class I lever, because the
load and muscle’s force are on the ends and the fulcrum is in the
middle. How tiresome! With a firm grasp of the concept of torque,
we realize that all such examples can be analyzed in much the same
way. Physics is at its best when it lets us understand many appar-
ently complicated phenomena in terms of a few simple yet powerful
concepts.
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ab / The two atoms cover the
same angle in a given time
interval.

ac / Their velocity vectors,
however, differ in both magnitude
and direction.

15.7 Rigid-body rotation
Kinematics

When a rigid object rotates, every part of it (every atom) moves
in a circle, covering the same angle in the same amount of time,
ab. Every atom has a different velocity vector, ac. Since all the
velocities are different, we can’t measure the speed of rotation of
the top by giving a single velocity. We can, however, specify its
speed of rotation consistently in terms of angle per unit time. Let
the position of some reference point on the top be denoted by its
angle θ, measured in a circle around the axis. For reasons that will
become more apparent shortly, we measure all our angles in radians.
Then the change in the angular position of any point on the top can
be written as dθ, and all parts of the top have the same value of dθ
over a certain time interval dt. We define the angular velocity, ω
(Greek omega),

ω =
dθ

dt
,

[definition of angular velocity; θ in units of radians]

which is similar to, but not the same as, the quantity ω we defined
earlier to describe vibrations. The relationship between ω and t
is exactly analogous to that between x and t for the motion of a
particle through space.

self-check B
If two different people chose two different reference points on the top
in order to define θ=0, how would their θ-t graphs differ? What effect
would this have on the angular velocities? . Answer, p. 527

The angular velocity has units of radians per second, rad/s.
However, radians are not really units at all. The radian measure
of an angle is defined, as the length of the circular arc it makes,
divided by the radius of the circle. Dividing one length by another
gives a unitless quantity, so anything with units of radians is really
unitless. We can therefore simplify the units of angular velocity, and
call them inverse seconds, s−1.

A 78-rpm record example 12
. In the early 20th century, the standard format for music record-
ings was a plastic disk that held a single song and rotated at 78
rpm (revolutions per minute). What was the angular velocity of
such a disk?

. If we measure angles in units of revolutions and time in units
of minutes, then 78 rpm is the angular velocity. Using standard
physics units of radians/second, however, we have

78 revolutions
1 minute

× 2π radians
1 revolution

× 1 minute
60 seconds

= 8.2 s−1 .
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ad / Analogies between rota-
tional and linear quantities.

ae / We construct a coordi-
nate system that coincides with
the location and motion of the
moving point of interest at a
certain moment.

In the absence of any torque, a rigid body will rotate indefinitely
with the same angular velocity. If the angular velocity is changing
because of a torque, we define an angular acceleration,

α =
dω

dt
, [definition of angular acceleration]

The symbol is the Greek letter alpha. The units of this quantity are
rad/s2, or simply s−2.

The mathematical relationship between ω and θ is the same as
the one between v and x, and similarly for α and a. We can thus
make a system of analogies, ad, and recycle all the familiar kinematic
equations for constant-acceleration motion.

The synodic period example 13
Mars takes nearly twice as long as the Earth to complete an orbit.
If the two planets are alongside one another on a certain day,
then one year later, Earth will be back at the same place, but
Mars will have moved on, and it will take more time for Earth to
finish catching up. Angular velocities add and subtract, just as
velocity vectors do. If the two planets’ angular velocities are ω1
and ω2, then the angular velocity of one relative to the other is
ω1−ω2. The corresponding period, 1/(1/T1−1/T2) is known as
the synodic period.

A neutron star example 14
. A neutron star is initially observed to be rotating with an angular
velocity of 2.0 s−1, determined via the radio pulses it emits. If its
angular acceleration is a constant −1.0 × 10−8 s−2, how many
rotations will it complete before it stops? (In reality, the angular
acceleration is not always constant; sudden changes often occur,
and are referred to as “starquakes!”)

. The equation v2
f −v2

i =2a∆x can be translated intoω2
f −ω

2
i =2α∆θ,

giving

∆θ = (ω2
f −ω

2
i )/2α

= 2.0× 108 radians

= 3.2× 107 rotations .

Relations between angular quantities and motion of a point

It is often necessary to be able to relate the angular quantities
to the motion of a particular point on the rotating object. As we
develop these, we will encounter the first example where the advan-
tages of radians over degrees become apparent.

The speed at which a point on the object moves depends on both
the object’s angular velocity ω and the point’s distance r from the
axis. We adopt a coordinate system, ae, with an inward (radial)
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af / Even if the rotating object has
zero angular acceleration, every
point on it has an acceleration
towards the center.

axis and a tangential axis. The length of the infinitesimal circular
arc ds traveled by the point in a time interval dt is related to dθ
by the definition of radian measure, dθ = ds/r, where positive and
negative values of ds represent the two possible directions of motion
along the tangential axis. We then have vt = ds/dt = rdθ/dt = ωr,
or

vt = ωr . [tangential velocity of a point at a

distance r from the axis of rotation]

The radial component is zero, since the point is not moving inward
or outward,

vr = 0 . [radial velocity of a point at a

distance r from the axis of rotation]

Note that we had to use the definition of radian measure in this
derivation. Suppose instead we had used units of degrees for our an-
gles and degrees per second for angular velocities. The relationship
between dθdegrees and ds is dθdegrees = (360/2π)s/r, where the extra
conversion factor of (360/2π) comes from that fact that there are 360
degrees in a full circle, which is equivalent to 2π radians. The equa-
tion for vt would then have been vt = (2π/360)(ωdegrees per second)(r),
which would have been much messier. Simplicity, then, is the rea-
son for using radians rather than degrees; by using radians we avoid
infecting all our equations with annoying conversion factors.

Since the velocity of a point on the object is directly proportional
to the angular velocity, you might expect that its acceleration would
be directly proportional to the angular acceleration. This is not true,
however. Even if the angular acceleration is zero, i.e., if the object
is rotating at constant angular velocity, every point on it will have
an acceleration vector directed toward the axis, af. As derived on
page 239, the magnitude of this acceleration is

ar = ω2r . [radial acceleration of a point

at a distance r from the axis]

For the tangential component, any change in the angular velocity
dω will lead to a change dω ·r in the tangential velocity, so it is easily
shown that

at = αr . [tangential acceleration of a point

at a distance r from the axis]

self-check C
Positive and negative signs of ω represent rotation in opposite direc-
tions. Why does it therefore make sense physically that ω is raised to
the first power in the equation for vt and to the second power in the one
for ar ? . Answer, p. 527
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Radial acceleration at the surface of the Earth example 15
. What is your radial acceleration due to the rotation of the earth
if you are at the equator?

. At the equator, your distance from the Earth’s rotation axis is
the same as the radius of the spherical Earth, 6.4 × 106 m. Your
angular velocity is

ω =
2π radians

1 day
= 7.3× 10−5 s−1 ,

which gives an acceleration of

ar = ω2r

= 0.034 m/s2 .

The angular velocity was a very small number, but the radius was
a very big number. Squaring a very small number, however, gives
a very very small number, so the ω2 factor “wins,” and the final
result is small.

If you’re standing on a bathroom scale, this small acceleration is
provided by the imbalance between the downward force of gravity
and the slightly weaker upward normal force of the scale on your
foot. The scale reading is therefore a little lower than it should
be.

Dynamics

If we want to connect all this kinematics to anything dynamical,
we need to see how it relates to torque and angular momentum.
Our strategy will be to tackle angular momentum first, since angu-
lar momentum relates to motion, and to use the additive property
of angular momentum: the angular momentum of a system of par-
ticles equals the sum of the angular momenta of all the individual
particles. The angular momentum of one particle within our rigidly
rotating object, L = mv⊥r, can be rewritten as L = r p sin θ,
where r and p are the magnitudes of the particle’s r and momen-
tum vectors, and θ is the angle between these two vectors. (The r
vector points outward perpendicularly from the axis to the parti-
cle’s position in space.) In rigid-body rotation the angle θ is 90◦,
so we have simply L = rp. Relating this to angular velocity, we
have L = rp = (r)(mv) = (r)(mωr) = mr2ω. The particle’s con-
tribution to the total angular momentum is proportional to ω, with
a proportionality constant mr2. We refer to mr2 as the particle’s
contribution to the object’s total moment of inertia, I, where “mo-
ment” is used in the sense of “important,” as in “momentous” — a
bigger value of I tells us the particle is more important for deter-
mining the total angular momentum. The total moment of inertia
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ag / Analogies between rota-
tional and linear quantities.

ah / Example 16

is

I =
∑

mir
2
i , [definition of the moment of inertia;

for rigid-body rotation in a plane; r is the distance

from the axis, measured perpendicular to the axis]

The angular momentum of a rigidly rotating body is then

L = Iω . [angular momentum of

rigid-body rotation in a plane]

Since torque is defined as dL/dt, and a rigid body has a constant
moment of inertia, we have τ = dL/dt = Idω/dt = Iα,

τ = Iα , [relationship between torque and

angular acceleration for rigid-body rotation in a plane]

which is analogous to F = ma.

The complete system of analogies between linear motion and
rigid-body rotation is given in figure ag.

A barbell example 16
. The barbell shown in figure ah consists of two small, dense,
massive balls at the ends of a very light rod. The balls have
masses of 2.0 kg and 1.0 kg, and the length of the rod is 3.0
m. Find the moment of inertia of the rod (1) for rotation about its
center of mass, and (2) for rotation about the center of the more
massive ball.

. (1) The ball’s center of mass lies 1/3 of the way from the greater
mass to the lesser mass, i.e., 1.0 m from one and 2.0 m from the
other. Since the balls are small, we approximate them as if they
were two pointlike particles. The moment of inertia is

I = (2.0 kg)(1.0 m)2 + (1.0 kg)(2.0 m)2

= 2.0 kg·m2 + 4.0 kg·m2

= 6.0 kg·m2

Perhaps counterintuitively, the less massive ball contributes far
more to the moment of inertia.

(2) The big ball theoretically contributes a little bit to the moment
of inertia, since essentially none of its atoms are exactly at r=0.
However, since the balls are said to be small and dense, we as-
sume all the big ball’s atoms are so close to the axis that we can
ignore their small contributions to the total moment of inertia:

I = (1.0 kg)(3.0 m)2

= 9.0 kg·m2

This example shows that the moment of inertia depends on the
choice of axis. For example, it is easier to wiggle a pen about its
center than about one end.
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The parallel axis theorem example 17
. Generalizing the previous example, suppose we pick any axis
parallel to axis 1, but offset from it by a distance h. Part (2) of
the previous example then corresponds to the special case of
h = −1.0 m (negative being to the left). What is the moment of
inertia about this new axis?

. The big ball’s distance from the new axis is (1.0 m)+h, and the
small one’s is (2.0 m)-h. The new moment of inertia is

I = (2.0 kg)[(1.0 m)+h]2 + (1.0 kg)[(2.0 m)− h]2

= 6.0 kg·m2 + (4.0 kg·m)h − (4.0 kg·m)h + (3.0 kg)h2 .

The constant term is the same as the moment of inertia about the
center-of-mass axis, the first-order terms cancel out, and the third
term is just the total mass multiplied by h2. The interested reader
will have no difficulty in generalizing this to any set of particles
(problem 27, p. 453), resulting in the parallel axis theorem: If an
object of total mass M rotates about a line at a distance h from
its center of mass, then its moment of inertia equals Icm + Mh2,
where Icm is the moment of inertia for rotation about a parallel line
through the center of mass.

Scaling of the moment of inertia example 18
. (1) Suppose two objects have the same mass and the same
shape, but one is less dense, and larger by a factor k . How do
their moments of inertia compare?
(2) What if the densities are equal rather than the masses?

. (1) This is like increasing all the distances between atoms by a
factor k . All the r ’s become greater by this factor, so the moment
of inertia is increased by a factor of k2.
(2) This introduces an increase in mass by a factor of k3, so the
moment of inertia of the bigger object is greater by a factor of
k5.

Iterated integrals

In various places in this book, starting with subsection 15.7.5,
we’ll come across integrals stuck inside other integrals. These are
known as iterated integrals, or double integrals, triple integrals, etc.
Similar concepts crop up all the time even when you’re not doing
calculus, so let’s start by imagining such an example. Suppose you
want to count how many squares there are on a chess board, and you
don’t know how to multiply eight times eight. You could start from
the upper left, count eight squares across, then continue with the
second row, and so on, until you how counted every square, giving
the result of 64. In slightly more formal mathematical language,
we could write the following recipe: for each row, r, from 1 to 8,
consider the columns, c, from 1 to 8, and add one to the count for
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each one of them. Using the sigma notation, this becomes

8∑
r=1

8∑
c=1

1 .

If you’re familiar with computer programming, then you can think
of this as a sum that could be calculated using a loop nested inside
another loop. To evaluate the result (again, assuming we don’t know
how to multiply, so we have to use brute force), we can first evaluate
the inside sum, which equals 8, giving

8∑
r=1

8 .

Notice how the “dummy” variable c has disappeared. Finally we do
the outside sum, over r, and find the result of 64.

Now imagine doing the same thing with the pixels on a TV
screen. The electron beam sweeps across the screen, painting the
pixels in each row, one at a time. This is really no different than the
example of the chess board, but because the pixels are so small, you
normally think of the image on a TV screen as continuous rather
than discrete. This is the idea of an integral in calculus. Suppose
we want to find the area of a rectangle of width a and height b, and
we don’t know that we can just multiply to get the area ab. The
brute force way to do this is to break up the rectangle into a grid of
infinitesimally small squares, each having width dx and height dy,
and therefore the infinitesimal area dA = dxdy. For convenience,
we’ll imagine that the rectangle’s lower left corner is at the origin.
Then the area is given by this integral:

area =

∫ b

y=0

∫ a

x=0
dA

=

∫ b

y=0

∫ a

x=0
dx dy

Notice how the leftmost integral sign, over y, and the rightmost dif-
ferential, dy, act like bookends, or the pieces of bread on a sandwich.
Inside them, we have the integral sign that runs over x, and the dif-
ferential dx that matches it on the right. Finally, on the innermost
layer, we’d normally have the thing we’re integrating, but here’s it’s
1, so I’ve omitted it. Writing the lower limits of the integrals with
x = and y = helps to keep it straight which integral goes with with
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differential. The result is

area =

∫ b

y=0

∫ a

x=0
dA

=

∫ b

y=0

∫ a

x=0
dx dy

=

∫ b

y=0

(∫ a

x=0
dx

)
dy

=

∫ b

y=0
a dy

= a

∫ b

y=0
dy

= ab .

Area of a triangle example 19
. Find the area of a 45-45-90 right triangle having legs a.

. Let the triangle’s hypotenuse run from the origin to the point
(a, a), and let its legs run from the origin to (0, a), and then to
(a, a). In other words, the triangle sits on top of its hypotenuse.
Then the integral can be set up the same way as the one before,
but for a particular value of y , values of x only run from 0 (on the
y axis) to y (on the hypotenuse). We then have

area =
∫ a

y=0

∫ y

x=0
dA

=
∫ a

y=0

∫ y

x=0
dx dy

=
∫ a

y=0

(∫ y

x=0
dx
)

dy

=
∫ a

y=0
y dy

=
1
2

a2

Note that in this example, because the upper end of the x values
depends on the value of y , it makes a difference which order we
do the integrals in. The x integral has to be on the inside, and we
have to do it first.

Volume of a cube example 20
. Find the volume of a cube with sides of length a.

. This is a three-dimensional example, so we’ll have integrals
nested three deep, and the thing we’re integrating is the volume
dV = dxdydz.
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volume =
∫ a

z=0

∫ a

y=0

∫ a

x=0
dx dy dz

=
∫ a

z=0

∫ a

y=0
a dy dz

= a
∫ a

z=0

∫ a

y=0
dy dz

= a
∫ a

z=0
a dz

= a3

Area of a circle example 21
. Find the area of a circle.

. To make it easy, let’s find the area of a semicircle and then
double it. Let the circle’s radius be r , and let it be centered on the
origin and bounded below by the x axis. Then the curved edge
is given by the equation r2 = x2 + y2, or y =

√
r2 − x2. Since

the y integral’s limit depends on x , the x integral has to be on the
outside. The area is

area =
∫ r

x=−r

∫ √r2−x2

y=0
dy dx

=
∫ r

x=−r

√
r2 − x2dx

= r
∫ r

x=−r

√
1− (x/r )2 dx .

Substituting u = x/r ,

area = r2
∫ 1

u=−1

√
1− u2 du

The definite integal equals π, as you can find using a trig substi-
tution or simply by looking it up in a table, and the result is, as
expected, πr2/2 for the area of the semicircle.

Finding moments of inertia by integration

When calculating the moment of inertia of an ordinary-sized ob-
ject with perhaps 1026 atoms, it would be impossible to do an actual
sum over atoms, even with the world’s fastest supercomputer. Cal-
culus, however, offers a tool, the integral, for breaking a sum down
to infinitely many small parts. If we don’t worry about the exis-
tence of atoms, then we can use an integral to compute a moment
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of inertia as if the object was smooth and continuous throughout,
rather than granular at the atomic level. Of course this granular-
ity typically has a negligible effect on the result unless the object
is itself an individual molecule. This subsection consists of three
examples of how to do such a computation, at three distinct levels
of mathematical complication.

Moment of inertia of a thin rod

What is the moment of inertia of a thin rod of mass M and
length L about a line perpendicular to the rod and passing through
its center? We generalize the discrete sum

I =
∑

mir
2
i

to a continuous one,

I =

∫
r2dm

=

∫ L/2

−L/2
x2 M

L
dx [r = |x|, so r2 = x2]

=
1

12
ML2

In this example the object was one-dimensional, which made
the math simple. The next example shows a strategy that can be
used to simplify the math for objects that are three-dimensional,
but possess some kind of symmetry.

Moment of inertia of a disk

What is the moment of inertia of a disk of radius b, thickness t,
and mass M , for rotation about its central axis?

We break the disk down into concentric circular rings of thick-
ness dr. Since all the mass in a given circular slice has essentially
the same value of r (ranging only from r to r + dr), the slice’s con-
tribution to the total moment of inertia is simply r2dm. We then
have

I =

∫
r2dm

=

∫
r2ρ dV ,

where V = πb2t is the total volume, ρ = M/V = M/πb2t is the
density, and the volume of one slice can be calculated as the volume
enclosed by its outer surface minus the volume enclosed by its inner
surface, dV = π(r + dr)2t− πr2t = 2πtrdr.

I =

∫ b

0
r2 M

πb2t
2πt r dr

=
1

2
Mb2 .
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In the most general case where there is no symmetry about the
rotation axis, we must use iterated integrals, as discussed in subsec-
tion 15.7.4. The example of the disk possessed two types of symme-
try with respect to the rotation axis: (1) the disk is the same when
rotated through any angle about the axis, and (2) all slices perpen-
dicular to the axis are the same. These two symmetries reduced the
number of layers of integrals from three to one. The following ex-
ample possesses only one symmetry, of type (2), and we simply set
it up as a triple integral. You may not have seen multiple integrals
yet in a math course. If so, just skim this example.

Moment of inertia of a cube

What is the moment of inertia of a cube of side b, for rotation
about an axis that passes through its center and is parallel to four
of its faces? Let the origin be at the center of the cube, and let x
be the rotation axis.

I =

∫
r2dm

= ρ

∫
r2dV

= ρ

∫ b/2

−b/2

∫ b/2

−b/2

∫ b/2

−b/2

(
y2 + z2

)
dx dy dz

= ρb

∫ b/2

−b/2

∫ b/2

−b/2

(
y2 + z2

)
dy dz

The fact that the last step is a trivial integral results from the sym-
metry of the problem. The integrand of the remaining double in-
tegral breaks down into two terms, each of which depends on only
one of the variables, so we break it into two integrals,

I = ρb

∫ b/2

−b/2

∫ b/2

−b/2
y2dy dz + ρb

∫ b/2

−b/2

∫ b/2

−b/2
z2dy dz

which we know have identical results. We therefore only need to
evaluate one of them and double the result:

I = 2ρb

∫ b/2

−b/2

∫ b/2

−b/2
z2dy d z

= 2ρb2
∫ b/2

−b/2
z2dz

=
1

6
ρb5

=
1

6
Mb2

Figure ai shows the moments of inertia of some shapes, which
were evaluated with techniques like these.
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aj / Example 23.

ai / Moments of inertia of some
geometric shapes.

The hammer throw example 22
. In the men’s Olympic hammer throw, a steel ball of radius 6.1 cm
is swung on the end of a wire of length 1.22 m. What fraction of
the ball’s angular momentum comes from its rotation, as opposed
to its motion through space?

. It’s always important to solve problems symbolically first, and
plug in numbers only at the end, so let the radius of the ball be b,
and the length of the wire `. If the time the ball takes to go once
around the circle is T , then this is also the time it takes to revolve
once around its own axis. Its speed is v = 2π`/T , so its angular
momentum due to its motion through space is mv` = 2πm`2/T .
Its angular momentum due to its rotation around its own cen-
ter is (4π/5)mb2/T . The ratio of these two angular momenta is
(2/5)(b/`)2 = 1.0×10−3. The angular momentum due to the ball’s
spin is extremely small.

Toppling a rod example 23
. A rod of length b and mass m stands upright. We want to strike
the rod at the bottom, causing it to fall and land flat. Find the
momentum, p, that should be delivered, in terms of m, b, and
g. Can this really be done without having the rod scrape on the
floor?

. This is a nice example of a question that can very nearly be
answered based only on units. Since the three variables, m, b,
and g, all have different units, they can’t be added or subtracted.
The only way to combine them mathematically is by multiplication
or division. Multiplying one of them by itself is exponentiation, so
in general we expect that the answer must be of the form

p = Amjbkg l ,

where A, j , k , and l are unitless constants. The result has to have
units of kg·m/s. To get kilograms to the first power, we need

j = 1 ,

Section 15.7 Rigid-body rotation 429



meters to the first power requires

k + l = 1 ,

and seconds to the power −1 implies

l = 1/2 .

We find j = 1, k = 1/2, and l = 1/2, so the solution must be of the
form

p = Am
√

bg .

Note that no physics was required!

Consideration of units, however, won’t help us to find the unit-
less constant A. Let t be the time the rod takes to fall, so that
(1/2)gt2 = b/2. If the rod is going to land exactly on its side,
then the number of revolutions it completes while in the air must
be 1/4, or 3/4, or 5/4, . . . , but all the possibilities greater than 1/4
would cause the head of the rod to collide with the floor prema-
turely. The rod must therefore rotate at a rate that would cause
it to complete a full rotation in a time T = 4t , and it has angular
momentum L = (π/6)mb2/T .

The momentum lost by the object striking the rod is p, and by
conservation of momentum, this is the amount of momentum, in
the horizontal direction, that the rod acquires. In other words,
the rod will fly forward a little. However, this has no effect on
the solution to the problem. More importantly, the object striking
the rod loses angular momentum bp/2, which is also transferred
to the rod. Equating this to the expression above for L, we find
p = (π/12)m

√
bg.

Finally, we need to know whether this can really be done without
having the foot of the rod scrape on the floor. The figure shows
that the answer is no for this rod of finite width, but it appears
that the answer would be yes for a sufficiently thin rod. This is
analyzed further in homework problem 46 on page 456.
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15.8 Angular momentum in three dimensions
Conservation of angular momentum produces some surprising phe-
nomena when extended to three dimensions. Try the following ex-
periment, for example. Take off your shoe, and toss it in to the air,
making it spin along its long (toe-to-heel) axis. You should observe
a nice steady pattern of rotation. The same happens when you spin
the shoe about its shortest (top-to-bottom) axis. But something
unexpected happens when you spin it about its third (left-to-right)
axis, which is intermediate in length between the other two. Instead
of a steady pattern of rotation, you will observe something more
complicated, with the shoe changing its orientation with respect to
the rotation axis.

Rigid-body kinematics in three dimensions

How do we generalize rigid-body kinematics to three dimensions?
When we wanted to generalize the kinematics of a moving particle
to three dimensions, we made the numbers r, v, and a into vectors
r, v, and a. This worked because these quantities all obeyed the
same laws of vector addition. For instance, one of the laws of vector
addition is that, just like addition of numbers, vector addition gives
the same result regardless of the order of the two quantities being
added. Thus you can step sideways 1 m to the right and then
step forward 1 m, and the end result is the same as if you stepped
forward first and then to the side. In order words, it didn’t matter
whether you took ∆r1 + ∆r2 or ∆r2 + ∆r1. In math this is called
the commutative property of addition.

ak / Performing the rotations in
one order gives one result, 3,
while reversing the order gives a
different result, 5.

Angular motion, unfortunately doesn’t have this property, as
shown in figure ak. Doing a rotation about the x axis and then
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al / The right-hand rule for
associating a vector with a
direction of rotation.

about y gives one result, while doing them in the opposite order
gives a different result. These operations don’t “commute,” i.e., it
makes a difference what order you do them in.

This means that there is in general no possible way to construct
a ∆θ vector. However, if you try doing the operations shown in
figure ak using small rotation, say about 10 degrees instead of 90,
you’ll find that the result is nearly the same regardless of what
order you use; small rotations are very nearly commutative. Not
only that, but the result of the two 10-degree rotations is about the
same as a single, somewhat larger, rotation about an axis that lies
symmetrically at between the x and y axes at 45 degree angles to
each one. This is exactly what we would expect if the two small
rotations did act like vectors whose directions were along the axis
of rotation. We therefore define a dθ vector whose magnitude is
the amount of rotation in units of radians, and whose direction is
along the axis of rotation. Actually this definition is ambiguous,
because there it could point in either direction along the axis. We
therefore use a right-hand rule as shown in figure al to define the
direction of the dθ vector, and the ω vector, ω = dθ/dt, based on it.
Aliens on planet Tammyfaye may decide to define it using their left
hands rather than their right, but as long as they keep their scientific
literature separate from ours, there is no problem. When entering a
physics exam, always be sure to write a large warning note on your
left hand in magic marker so that you won’t be tempted to use it
for the right-hand rule while keeping your pen in your right.

self-check D
Use the right-hand rule to determine the directions of the ω vectors in
each rotation shown in figures ak/1 through ak/5. . Answer, p. 527

Because the vector relationships among dθ, ω, and α are strictly
analogous to the ones involving dr, v, and a (with the proviso that
we avoid describing large rotations using ∆θ vectors), any operation
in r-v-a vector kinematics has an exact analog in θ-ω-α kinematics.

Result of successive 10-degree rotations example 24
. What is the result of two successive (positive) 10-degree rota-
tions about the x and y axes? That is, what single rotation about a
single axis would be equivalent to executing these in succession?

. The result is only going to be approximate, since 10 degrees
is not an infinitesimally small angle, and we are not told in what
order the rotations occur. To some approximation, however, we
can add the ∆θ vectors in exactly the same way we would add ∆r
vectors, so we have

∆θ ≈ ∆θ1 + ∆θ2

≈ (10 degrees)x̂ + (10 degrees)ŷ .

This is a vector with a magnitude of
√

(10 deg)2 + (10 deg)2 =
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14 deg, and it points along an axis midway between the x and y
axes.

Angular momentum in three dimensions

The vector cross product

In order to expand our system of three-dimensional kinematics to
include dynamics, we will have to generalize equations like vt = ωr,
τ = rF sin θrF , and L = rp sin θrp, each of which involves three
quantities that we have either already defined as vectors or that we
want to redefine as vectors. Although the first one appears to differ
from the others in its form, it could just as well be rewritten as
vt = ωr sin θωr, since θωr = 90◦, and sin θωr = 1.

It thus appears that we have discovered something general about
the physically useful way to relate three vectors in a multiplicative
way: the magnitude of the result always seems to be proportional to
the product of the magnitudes of the two vectors being “multiplied,”
and also to the sine of the angle between them.

Is this pattern just an accident? Actually the sine factor has
a very important physical property: it goes to zero when the two
vectors are parallel. This is a Good Thing. The generalization of
angular momentum into a three-dimensional vector, for example, is
presumably going to describe not just the clockwise or counterclock-
wise nature of the motion but also from which direction we would
have to view the motion so that it was clockwise or counterclock-
wise. (A clock’s hands go counterclockwise as seen from behind the
clock, and don’t rotate at all as seen from above or to the side.) Now
suppose a particle is moving directly away from the origin, so that
its r and p vectors are parallel. It is not going around the origin
from any point of view, so its angular momentum vector had better
be zero.

Thinking in a slightly more abstract way, we would expect the
angular momentum vector to point perpendicular to the plane of
motion, just as the angular velocity vector points perpendicular to
the plane of motion. The plane of motion is the plane containing
both r and p, if we place the two vectors tail-to-tail. But if r and
p are parallel and are placed tail-to-tail, then there are infinitely
many planes containing them both. To pick one of these planes in
preference to the others would violate the symmetry of space, since
they should all be equally good. Thus the zero-if-parallel property
is a necessary consequence of the underlying symmetry of the laws
of physics.

The following definition of a kind of vector multiplication is con-
sistent with everything we’ve seen so far, and later we’ll prove that
the definition is unique, i.e., if we believe in the symmetry of space,
it is essentially the only way of defining the multiplication of two
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am / The right-hand rule for
the direction of the vector cross
product.

an / The magnitude of the
cross product is the area of the
shaded parallelogram.

ao / A cyclic change in the x ,
y , and z subscripts.

vectors to produce a third vector:

Definition of the vector cross product:
The cross product A × B of two vectors A and B is defined as
follows:
(1) Its magnitude is defined by |A×B| = |A||B| sin θAB, where θAB
is the angle between A and B when they are placed tail-to-tail.
(2) Its direction is along the line perpendicular to both A and B.
Of the two such directions, it is the one that obeys the right-hand
rule shown in figure am.

The name “cross product” refers to the symbol, and distin-
guishes it from the dot product, which acts on two vectors but
produces a scalar.

Although the vector cross-product has nearly all the properties
of numerical multiplication, e.g., A× (B + C) = A×B + A×C, it
lacks the usual property of commutativity. Try applying the right-
hand rule to find the direction of the vector cross product B × A
using the two vectors shown in the figure. This requires starting
with a flattened hand with the four fingers pointing along B, and
then curling the hand so that the fingers point along A. The only
possible way to do this is to point your thumb toward the floor, in
the opposite direction. Thus for the vector cross product we have

A×B = −B×A ,

a property known as anticommutativity. The vector cross product
is also not associative, i.e., A× (B×C) is usually not the same as
(A×B)×C.

A geometric interpretation of the cross product, an, is that if
both A and B are vectors with units of distance, then the mag-
nitude of their cross product can be interpreted as the area of the
parallelogram they form when placed tail-to-tail.

A useful expression for the components of the vector cross prod-
uct in terms of the components of the two vectors being multiplied
is as follows:

(A×B)x = AyBz −ByAz
(A×B)y = AzBx −BzAx
(A×B)z = AxBy −BxAy

I’ll prove later that these expressions are equivalent to the previ-
ous definition of the cross product. Although they may appear
formidable, they have a simple structure: the subscripts on the right
are the other two besides the one on the left, and each equation is
related to the preceding one by a cyclic change in the subscripts,
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ap / The position and momentum
vectors of an atom in the spinning
top.

aq / The right-hand rule for
the atom’s contribution to the
angular momentum.

ao. If the subscripts were not treated in some completely symmet-
ric manner like this, then the definition would provide some way to
distinguish one axis from another, which would violate the symme-
try of space.

self-check E
Show that the component equations are consistent with the rule A×B =
−B× A. . Answer, p. 527

Angular momentum in three dimensions

In terms of the vector cross product, we have:

v = ω × r

L = r× p

τ = r× F

But wait, how do we know these equations are even correct?
For instance, how do we know that the quantity defined by r × p
is in fact conserved? Well, just as we saw on page 346 that the
dot product is unique (i.e., can only be defined in one way while
observing rotational invariance), the cross product is also unique,
as proved on page 443. If r×p was not conserved, then there could
not be any generally conserved quantity that would reduce to our
old definition of angular momentum in the special case of plane
rotation. This doesn’t prove conservation of angular momentum
— only experiments can prove that — but it does prove that if
angular momentum is conserved in three dimensions, there is only
one possible way to generalize from two dimensions to three.

Angular momentum of a spinning top example 25
As an illustration, we consider the angular momentum of a spin-
ning top. Figures ap and aq show the use of the vector cross
product to determine the contribution of a representative atom to
the total angular momentum. Since every other atom’s angular
momentum vector will be in the same direction, this will also be
the direction of the total angular momentum of the top. This hap-
pens to be rigid-body rotation, and perhaps not surprisingly, the
angular momentum vector is along the same direction as the an-
gular velocity vector.

Three important points are illustrated by this example: (1)
When we do the full three-dimensional treatment of angular mo-
mentum, the “axis” from which we measure the position vectors is
just an arbitrarily chosen point. If this had not been rigid-body
rotation, we would not even have been able to identify a single line
about which every atom circled. (2) Starting from figure ap, we had
to rearrange the vectors to get them tail-to-tail before applying the
right-hand rule. If we had attempted to apply the right-hand rule
to figure ap, the direction of the result would have been exactly the
opposite of the correct answer. (3) The equation L = r× p cannot
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ar / A top is supported at its
tip by a pinhead. (More practical
devices to demonstrate this
would use a double bearing.)

as / The torque made by gravity
is in the horizontal plane.

at / The ∆L vector is in the
same direction as the torque, out
of the page.

be applied all at once to an entire system of particles. The total
momentum of the top is zero, which would give an erroneous result
of zero angular momentum (never mind the fact that r is not well
defined for the top as a whole).

Doing the right-hand rule like this requires some practice. I
urge you to make models like aq out of rolled up pieces of paper and
to practice with the model in various orientations until it becomes
natural.

Precession example 26
Figure ar shows a counterintuitive example of the concepts we’ve
been discussing. One expects the torque due to gravity to cause
the top to flop down. Instead, the top remains spinning in the hor-
izontal plane, but its axis of rotation starts moving in the direction
shown by the shaded arrow. This phenomenon is called preces-
sion. Figure as shows that the torque due to gravity is out of the
page. (Actually we should add up all the torques on all the atoms
in the top, but the qualitative result is the same.) Since torque
is the rate of change of angular momentum, τ = dL/dt , the ∆L
vector must be in the same direction as the torque (division by
a positive scalar doesn’t change the direction of the vector). As
shown in at, this causes the angular momentum vector to twist in
space without changing its magnitude.

For similar reasons, the Earth’s axis precesses once every 26,000
years (although not through a great circle, since the angle between
the axis and the force isn’t 90 degrees as in figure ar). This pre-
cession is due to a torque exerted by the moon. If the Earth was
a perfect sphere, there could be no precession effect due to sym-
metry. However, the Earth’s own rotation causes it to be slightly
flattened (oblate) relative to a perfect sphere, giving it “love han-
dles” on which the moon’s gravity can act. The moon’s gravity on
the nearer side of the equatorial bulge is stronger, so the torques do
not cancel out perfectly. Presently the earth’s axis very nearly lines
up with the star Polaris, but in 12,000 years, the pole star will be
Vega instead.

The frisbee example 27
The flow of the air over a flying frisbee generates lift, and the lift
at the front and back of the frisbee isn’t necessarily balanced. If
you throw a frisbee without rotating it, as if you were shooting a
basketball with two hands, you’ll find that it pitches, i.e., its nose
goes either up or down. When I do this with my frisbee, it goes
nose down, which apparently means that the lift at the back of
the disc is greater than the lift at the front. The two torques are
unbalanced, resulting in a total torque that points to the left.

The way you actually throw a frisbee is with one hand, putting a
lot of spin on it. If you throw backhand, which is how most peo-
ple first learn to do it, the angular momentum vector points down
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au / Example 28.

(assuming you’re right-handed). On my frisbee, the aerodynamic
torque to the left would therefore tend to make the angular mo-
mentum vector precess in the clockwise direction as seen by the
thrower. This would cause the disc to roll to the right, and there-
fore follow a curved trajectory. Some specialized discs, used in
the sport of disc golf, are actually designed intentionally to show
this behavior; they’re known as “understable” discs. However, the
typical frisbee that most people play with is designed to be stable:
as the disc rolls to one side, the airflow around it is altered in way
that tends to bring the disc back into level flight. Such a disc will
therefore tend to fly in a straight line, provided that it is thrown
with enough angular momentum.

Finding a cross product by components example 28
. What is the torque produced by a force given by x̂ + 2ŷ + 3ẑ (in
units of Newtons) acting on a point whose radius vector is 4x̂ + 2ŷ
(in meters)?

. It’s helpful to make a table of the components as shown in the
figure. The results are

τx = ryFz − Fy rz = 15 N·m
τy = rzFx − Fzrx =−12 N·m
τz = rxFy − Fx ry = 3 N·m

Torque and angular momentum example 29
In this example, we prove explicitly the consistency of the equa-

tions involving torque and angular momentum that we proved
above based purely on symmetry. Starting from the definition of
torque, we have

τ =
dL
dt

=
d
dt

∑
i

ri × pi

=
∑

i

d
dt

(ri × pi ) .

The derivative of a cross product can be evaluated in the same
way as the derivative of an ordinary scalar product:

τ =
∑

i

[(
dri

dt
× pi

)
+
(

ri ×
dpi

dt

)]
The first term is zero for each particle, since the velocity vector is
parallel to the momentum vector. The derivative appearing in the
second term is the force acting on the particle, so

τ =
∑

i

ri × Fi ,

which is the relationship we set out to prove.
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Rigid-body dynamics in three dimensions

The student who is not madly in love with mathematics may
wish to skip the rest of this section after absorbing the statement
that, for a typical, asymmetric object, the angular momentum vector
and the angular velocity vector need not be parallel. That is, only
for a body that possesses symmetry about the rotation axis is it true
that L = Iω (the rotational equivalent of p = mv) for some scalar
I.

Let’s evaluate the angular momentum of a rigidly rotating sys-
tem of particles:

L =
∑
i

ri × pi

=
∑
i

miri × vi

=
∑
i

miri × (ω × ri)

An important mathematical skill is to know when to give up and
back off. This is a complicated expression, and there is no reason
to expect it to simplify and, for example, take the form of a scalar
multiplied by ω. Instead we examine its general characteristics. If
we expanded it using the equation that gives the components of a
vector cross product, every term would have one of the ω compo-
nents raised to the first power, multiplied by a bunch of other stuff.
The most general possible form for the result is

Lx = Ixxωx + Ixyωy + Ixzωz

Ly = Iyxωx + Iyyωy + Iyzωz

Lz = Izxωx + Izyωy + Izzωz ,

which you may recognize as a case of matrix multiplication. The
moment of inertia is not a scalar, and not a three-component vector.
It is a matrix specified by nine numbers, called its matrix elements.

The elements of the moment of inertia matrix will depend on our
choice of a coordinate system. In general, there will be some special
coordinate system, in which the matrix has a simple diagonal form:

Lx = Ixxωx

Ly = Iyyωy

Lz = Izzωz .

The three special axes that cause this simplification are called
the principal axes of the object, and the corresponding coordinate
system is the principal axis system. For symmetric shapes such as
a rectangular box or an ellipsoid, the principal axes lie along the
intersections of the three symmetry planes, but even an asymmetric
body has principal axes.
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We can also generalize the plane-rotation equationK = (1/2)Iω2

to three dimensions as follows:

K =
∑
i

1

2
miv

2
i

=
1

2

∑
i

mi(ω × ri) · (ω × ri)

We want an equation involving the moment of inertia, and this has
some evident similarities to the sum we originally wrote down for
the moment of inertia. To massage it into the right shape, we need
the vector identity (A×B)·C = (B×C)·A, which we state without
proof. We then write

K =
1

2

∑
i

mi [ri × (ω × ri)] · ω

=
1

2
ω ·
∑
i

miri × (ω × ri)

=
1

2
L · ω

As a reward for all this hard work, let’s analyze the problem of
the spinning shoe that I posed at the beginning of the chapter. The
three rotation axes referred to there are approximately the principal
axes of the shoe. While the shoe is in the air, no external torques are
acting on it, so its angular momentum vector must be constant in
magnitude and direction. Its kinetic energy is also constant. That’s
in the room’s frame of reference, however. The principal axis frame
is attached to the shoe, and tumbles madly along with it. In the
principal axis frame, the kinetic energy and the magnitude of the
angular momentum stay constant, but the actual direction of the
angular momentum need not stay fixed (as you saw in the case
of rotation that was initially about the intermediate-length axis).
Constant |L| gives

L2
x + L2

y + L2
z = constant .

In the principal axis frame, it’s easy to solve for the components
of ω in terms of the components of L, so we eliminate ω from the
expression 2K = L · ω, giving

1

Ixx
L2
x +

1

Iyy
L2
y +

1

Izz
L2
z = constant #2.

The first equation is the equation of a sphere in the three di-
mensional space occupied by the angular momentum vector, while
the second one is the equation of an ellipsoid. The top figure cor-
responds to the case of rotation about the shortest axis, which has
the greatest moment of inertia element. The intersection of the two
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av / Visualizing surfaces of
constant energy and angular
momentum in Lx -Ly -Lz space.

aw / The Explorer I satellite.

surfaces consists only of the two points at the front and back of the
sphere. The angular momentum is confined to one of these points,
and can’t change its direction, i.e., its orientation with respect to the
principal axis system, which is another way of saying that the shoe
can’t change its orientation with respect to the angular momentum
vector. In the bottom figure, the shoe is rotating about the longest
axis. Now the angular momentum vector is trapped at one of the
two points on the right or left. In the case of rotation about the
axis with the intermediate moment of inertia element, however, the
intersection of the sphere and the ellipsoid is not just a pair of iso-
lated points but the curve shown with the dashed line. The relative
orientation of the shoe and the angular momentum vector can and
will change.

One application of the moment of inertia tensor is to video games
that simulate car racing or flying airplanes.

One more exotic example has to do with nuclear physics. Al-
though you have probably visualized atomic nuclei as nothing more
than featureless points, or perhaps tiny spheres, they are often el-
lipsoids with one long axis and two shorter, equal ones. Although
a spinning nucleus normally gets rid of its angular momentum via
gamma ray emission within a period of time on the order of picosec-
onds, it may happen that a deformed nucleus gets into a state in
which has a large angular momentum is along its long axis, which
is a very stable mode of rotation. Such states can live for seconds
or even years! (There is more to the story — this is the topic on
which I wrote my Ph.D. thesis — but the basic insight applies even
though the full treatment requires fancy quantum mechanics.)

Our analysis has so far assumed that the kinetic energy of ro-
tation energy can’t be converted into other forms of energy such as
heat, sound, or vibration. When this assumption fails, then rota-
tion about the axis of least moment of inertia becomes unstable,
and will eventually convert itself into rotation about the axis whose
moment of inertia is greatest. This happened to the U.S.’s first ar-
tificial satellite, Explorer I, launched in 1958. Note the long, floppy
antennas, which tended to dissipate kinetic energy into vibration. It
had been designed to spin about its minimimum-moment-of-inertia
axis, but almost immediately, as soon as it was in space, it began
spinning end over end. It was nevertheless able to carry out its
science mission, which didn’t depend on being able to maintain a
stable orientation, and it discovered the Van Allen radiation belts.

15.9 ? Proof of Kepler’s elliptical orbit law
Kepler determined purely empirically that the planets’ orbits were
ellipses, without understanding the underlying reason in terms of
physical law. Newton’s proof of this fact based on his laws of motion
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ax / The r −φ representation of a
curve.

ay / Proof that the two an-
gles labeled φ are in fact equal:
The definition of an ellipse is that
the sum of the distances from
the two foci stays constant. If we
move a small distance ` along the
ellipse, then one distance shrinks
by an amount ` cosφ1, while the
other grows by ` cosφ2. These
are equal, so φ1 = φ2.

and law of gravity was considered his crowning achievement both
by him and by his contemporaries, because it showed that the same
physical laws could be used to analyze both the heavens and the
earth. Newton’s proof was very lengthy, but by applying the more
recent concepts of conservation of energy and angular momentum
we can carry out the proof quite simply and succinctly, and without
calculus.

The basic idea of the proof is that we want to describe the shape
of the planet’s orbit with an equation, and then show that this equa-
tion is exactly the one that represents an ellipse. Newton’s original
proof had to be very complicated because it was based directly on
his laws of motion, which include time as a variable. To make any
statement about the shape of the orbit, he had to eliminate time
from his equations, leaving only space variables. But conservation
laws tell us that certain things don’t change over time, so they have
already had time eliminated from them.

There are many ways of representing a curve by an equation, of
which the most familiar is y = ax + b for a line in two dimensions.
It would be perfectly possible to describe a planet’s orbit using an
x − y equation like this, but remember that we are applying con-
servation of angular momentum, and the space variables that occur
in the equation for angular momentum are the distance from the
axis, r, and the angle between the velocity vector and the r vector,
which we will call φ. The planet will have φ=90◦when it is moving
perpendicular to the r vector, i.e., at the moments when it is at its
smallest or greatest distances from the sun. When φ is less than
90◦the planet is approaching the sun, and when it is greater than
90◦it is receding from it. Describing a curve with an r− φ equation
is like telling a driver in a parking lot a certain rule for what direc-
tion to steer based on the distance from a certain streetlight in the
middle of the lot.

The proof is broken into the three parts for easier digestion.
The first part is a simple and intuitively reasonable geometrical fact
about ellipses, whose proof we relegate to the caption of figure ay;
you will not be missing much if you merely absorb the result without
reading the proof.

(1) If we use one of the two foci of an ellipse as an axis for
defining the variables r and φ, then the angle between the tangent
line and the line drawn to the other focus is the same as φ, i.e., the
two angles labeled φ in figure ay are in fact equal.

The other two parts form the meat of our proof. We state the
results first and then prove them.

(2) A planet, moving under the influence of the sun’s gravity
with less then the energy required to escape, obeys an equation of
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az / Proof of part (3).

the form

sinφ =
1√

−pr2 + qr
,

where p and q are positive constants that depend on the planet’s
energy and angular momentum.

(3) A curve is an ellipse if and only if its r−φ equation is of the
form

sinφ =
1√

−pr2 + qr
,

where p and q are constants that depend on the size and shape of
the ellipse and p is greater than zero.

Proof of part (2)

The component of the planet’s velocity vector that is perpen-
dicular to the r vector is v⊥ = v sinφ, so conservation of angular
momentum tells us that L = mrv sinφ is a constant. Since the
planet’s mass is a constant, this is the same as the condition

rv sinφ = constant .

Conservation of energy gives

1

2
mv2 − GMm

r
= constant .

We solve the first equation for v and plug into the second equation
to eliminate v. Straightforward algebra then leads to the equation
claimed above, with the constant p being positive because of our
assumption that the planet’s energy is insufficient to escape from
the sun, i.e., its total energy is negative.

Proof of part (3)

We define the quantities α, d, and s as shown in the figure. The
law of cosines gives

d2 = r2 + s2 − 2rs cosα .

Using α = 180◦−2φ and the trigonometric identities cos(180◦−x) =
− cosx and cos 2x = 1− 2 sin2 x, we can rewrite this as

d2 = r2 + s2 − 2rs
(
2 sin2 φ− 1

)
.

Straightforward algebra transforms this into

sin φ =

√
(r + s)2 − d2

4rs
.

Since r + s is constant, the top of the fraction is constant, and the
denominator can be rewritten as 4rs = 4r(constant − r), which is
equivalent to the desired form.
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15.10 Some theorems and proofs
In this theorem I prove three theorems stated earlier, and state a
fourth theorem whose proof is left as an exercise.

Uniqueness of the cross product

The vector cross product as we have defined it has the following
properties:
(1) It does not violate rotational invariance.
(2) It has the property A× (B + C) = A×B + A×C.
(3) It has the property A× (kB) = k(A×B), where k is a scalar.

Theorem: The definition we have given is the only possible method
of multiplying two vectors to make a third vector which has these
properties, with the exception of trivial redefinitions which just in-
volve multiplying all the results by the same constant or swapping
the names of the axes. (Specifically, using a left-hand rule rather
than a right-hand rule corresponds to multiplying all the results by
−1.)

Proof: We prove only the uniqueness of the definition, without
explicitly proving that it has properties (1) through (3).

Using properties (2) and (3), we can break down any vector
multiplication (Axx̂ +Ayŷ +Azẑ)× (Bxx̂ +Byŷ +Bzẑ) into terms
involving cross products of unit vectors.

A “self-term” like x̂ × x̂ must either be zero or lie along the x
axis, since any other direction would violate property (1). If was not
zero, then (−x̂) × (−x̂) would have to lie in the opposite direction
to avoid breaking rotational invariance, but property (3) says that
(−x̂)×(−x̂) is the same as x̂×x̂, which is a contradiction. Therefore
the self-terms must be zero.

An “other-term” like x̂× ŷ could conceivably have components
in the x-y plane and along the z axis. If there was a nonzero compo-
nent in the x-y plane, symmetry would require that it lie along the
diagonal between the x and y axes, and similarly the in-the-plane
component of (−x̂)× ŷ would have to be along the other diagonal in
the x-y plane. Property (3), however, requires that (−x̂)× ŷ equal
−(x̂× ŷ), which would be along the original diagonal. The only way
it can lie along both diagonals is if it is zero.

We now know that x̂ × ŷ must lie along the z axis. Since we
are not interested in trivial differences in definitions, we can fix
x̂ × ŷ = ẑ, ignoring peurile possibilities such as x̂ × ŷ = 7ẑ or the
left-handed definition x̂× ŷ = −ẑ. Given x̂× ŷ = ẑ, the symmetry
of space requires that similar relations hold for ŷ× ẑ and ẑ× x̂, with
at most a difference in sign. A difference in sign could always be
eliminated by swapping the names of some of the axes, so ignoring
possible trivial differences in definitions we can assume that the
cyclically related set of relations x̂× ŷ = ẑ, ŷ× ẑ = x̂, and ẑ× x̂ = ŷ
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holds. Since the arbitrary cross-product with which we started can
be broken down into these simpler ones, the cross product is uniquely
defined.

Choice of axis theorem

Theorem: Suppose a closed system of material particles conserves
angular momentum in one frame of reference, with the axis taken
to be at the origin. Then conservation of angular momentum is
unaffected if the origin is relocated or if we change to a frame of
reference that is in constant-velocity motion with respect to the
first one. The theorem also holds in the case where the system is
not closed, but the total external force is zero.

Proof: In the original frame of reference, angular momentum is
conserved, so we have dL/dt=0. From example 29 on page 437, this
derivative can be rewritten as

dL

dt
=
∑
i

ri × Fi ,

where Fi is the total force acting on particle i. In other words, we’re
adding up all the torques on all the particles.

By changing to the new frame of reference, we have changed
the position vector of each particle according to ri → ri + k − ut,
where k is a constant vector that indicates the relative position of
the new origin at t = 0, and u is the velocity of the new frame with
respect to the old one. The forces are all the same in the new frame
of reference, however. In the new frame, the rate of change of the
angular momentum is

dL

dt
=
∑
i

(ri + k− ut)× Fi

=
∑
i

ri × Fi + (k− ut)×
∑
i

Fi .

The first term is the expression for the rate of change of the angu-
lar momentum in the original frame of reference, which is zero by
assumption. The second term vanishes by Newton’s third law; since
the system is closed, every force Fi cancels with some force Fj . (If
external forces act, but they add up to zero, then the sum can be
broken up into a sum of internal forces and a sum of external forces,
each of which is zero.) The rate of change of the angular momentum
is therefore zero in the new frame of reference.

Spin theorem

Theorem: An object’s angular momentum with respect to some
outside axis A can be found by adding up two parts:
(1) The first part is the object’s angular momentum found by using
its own center of mass as the axis, i.e., the angular momentum the
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object has because it is spinning.
(2) The other part equals the angular momentum that the object
would have with respect to the axis A if it had all its mass concen-
trated at and moving with its center of mass.

Proof: Let the system’s center of mass be at rcm, and let particle
i lie at position rcm + di. Then the total angular momentum is

L =
∑
i

(rcm + di)× pi

= rcm ×
∑
i

pi +
∑
i

di × pi ,

which establishes the result claimed, since we can identify the first
term with (2) and the second with (1).

Parallel axis theorem

Suppose an object has mass m, and moment of inertia Io for ro-
tation about some axis A passing through its center of mass. Given
a new axis B, parallel to A and lying at a distance h from it, the
object’s moment of inertia is given by Io +mh2.

The proof of this theorem is left as an exercise (problem 27,
p. 453).
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Summary
Selected vocabulary
angular momen-
tum . . . . . . . .

a measure of rotational motion; a conserved
quantity for a closed system

axis . . . . . . . . An arbitrarily chosen point used in the defini-
tion of angular momentum. Any object whose
direction changes relative to the axis is consid-
ered to have angular momentum. No matter
what axis is chosen, the angular momentum of
a closed system is conserved.

torque . . . . . . the rate of change of angular momentum; a
numerical measure of a force’s ability to twist
on an object

equilibrium . . . a state in which an object’s momentum and
angular momentum are constant

stable equilibrium one in which a force always acts to bring the
object back to a certain point

unstable equilib-
rium . . . . . . . .

one in which any deviation of the object from
its equilibrium position results in a force push-
ing it even farther away

Notation
L . . . . . . . . . . angular momentum
t . . . . . . . . . . torque
T . . . . . . . . . the period the time required for a rigidly ro-

tating body to complete one rotation
ω . . . . . . . . . . the angular velocity, dθ/dt
moment of iner-
tia, I . . . . . . .

the proportionality constant in the equation
L = Iω

Summary

Angular momentum is a measure of rotational motion which is
conserved for a closed system. This book only discusses angular
momentum for rotation of material objects in two dimensions. Not
all rotation is rigid like that of a wheel or a spinning top. An example
of nonrigid rotation is a cyclone, in which the inner parts take less
time to complete a revolution than the outer parts. In order to define
a measure of rotational motion general enough to include nonrigid
rotation, we define the angular momentum of a system by dividing
it up into small parts, and adding up all the angular momenta of
the small parts, which we think of as tiny particles. We arbitrarily
choose some point in space, the axis, and we say that anything
that changes its direction relative to that point possesses angular
momentum. The angular momentum of a single particle is

L = mv⊥r ,

where v⊥ is the component of its velocity perpendicular to the line
joining it to the axis, and r is its distance from the axis. Positive and
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negative signs of angular momentum are used to indicate clockwise
and counterclockwise rotation.

The choice of axis theorem states that any axis may be used for
defining angular momentum. If a system’s angular momentum is
constant for one choice of axis, then it is also constant for any other
choice of axis.

The spin theorem states that an object’s angular momentum
with respect to some outside axis A can be found by adding up two
parts:

(1) The first part is the object’s angular momentum found by
using its own center of mass as the axis, i.e., the angular momentum
the object has because it is spinning.

(2) The other part equals the angular momentum that the ob-
ject would have with respect to the axis A if it had all its mass
concentrated at and moving with its center of mass.

Torque is the rate of change of angular momentum. The torque
a force can produce is a measure of its ability to twist on an object.
The relationship between force and torque is

|τ | = r|F⊥| ,

where r is the distance from the axis to the point where the force is
applied, and F⊥ is the component of the force perpendicular to the
line connecting the axis to the point of application. Statics problems
can be solved by setting the total force and total torque on an object
equal to zero and solving for the unknowns.

In the special case of a rigid body rotating in a single plane, we
define

ω =
dθ

dt
[angular velocity]

and

α =
dω

dt
, [angular acceleration]

in terms of which we have

L = Iω

and

τ = Iα ,

where the moment of inertia, I, is defined as

I =
∑

mir
2
i ,
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summing over all the atoms in the object (or using calculus to per-
form a continuous sum, i.e. an integral). The relationship between
the angular quantities and the linear ones is

vt = ωr [tangential velocity of a point]

vr = 0 [radial velocity of a point]

at = αr . [radial acceleration of a point]

at a distance r from the axis]

ar = ω2r [radial acceleration of a point]

at a distance r from the axis]

In three dimensions, torque and angular momentum are vectors,
and are expressed in terms of the vector cross product, which is the
only rotationally invariant way of defining a multiplication of two
vectors that produces a third vector:

L = r× p

τ = r× F

In general, the cross product of vectors b and c has magnitude

|b× c| = |b| |c| sin θbc ,

which can be interpreted geometrically as the area of the parallel-
ogram formed by the two vectors when they are placed tail-to-tail.
The direction of the cross product lies along the line which is per-
pendicular to both vectors; of the two such directions, we choose the
one that is right-handed, in the sense that if we point the fingers of
the flattened right hand along b, then bend the knuckles to point
the fingers along c, the thumb gives the direction of b× c. In terms
of components, the cross product is

(b× c)x = bycz − cybz
(b× c)y = bzcx − czbx
(b× c)z = bxcy − cxby

The cross product has the disconcerting properties

a× b = −b× a [noncommutative]

and

a× (b× c) 6= (a× b)× c [nonassociative] ,

and there is no “cross-division.”

For rigid-body rotation in three dimensions, we define an angular
velocity vector ω, which lies along the axis of rotation and bears a
right-hand relationship to it. Except in special cases, there is no
scalar moment of inertia for which L = Iω; the moment of inertia
must be expressed as a matrix.
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Problem 4.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A skilled motorcyclist can ride up a ramp, fly through the air,
and land on another ramp. Why would it be useful for the rider to
speed up or slow down the back wheel while in the air?

2 An object thrown straight up in the air is momentarily at rest
when it reaches the top of its motion. Does that mean that it is in
equilibrium at that point? Explain.

3 An object is observed to have constant angular momentum.
Can you conclude that no torques are acting on it? Explain. [Based
on a problem by Serway and Faughn.]

4 The sun turns on its axis once every 26.0 days. Its mass is
2.0 × 1030 kg and its radius is 7.0 × 108 m. Assume it is a rigid
sphere of uniform density.
(a) What is the sun’s angular momentum?

√

In a few billion years, astrophysicists predict that the sun will use
up all its sources of nuclear energy, and will collapse into a ball of
exotic, dense matter known as a white dwarf. Assume that its radius
becomes 5.8 × 106 m (similar to the size of the Earth.) Assume it
does not lose any mass between now and then. (Don’t be fooled
by the photo, which makes it look like nearly all of the star was
thrown off by the explosion. The visually prominent gas cloud is
actually thinner than the best laboratory vacuum ever produced on
earth. Certainly a little bit of mass is actually lost, but it is not at
all unreasonable to make an approximation of zero loss of mass as
we are doing.)
(b) What will its angular momentum be?
(c) How long will it take to turn once on its axis?

√

5 (a) Alice says Cathy’s body has zero momentum, but Bob
says Cathy’s momentum is nonzero. Nobody is lying or making a
mistake. How is this possible? Give a concrete example.
(b) Alice and Bob agree that Dong’s body has nonzero momentum,
but disagree about Dong’s angular momentum, which Alice says is
zero, and Bob says is nonzero. Explain.

6 Two objects have the same momentum vector. Assume that
they are not spinning; they only have angular momentum due to
their motion through space. Can you conclude that their angular
momenta are the same? Explain. [Based on a problem by Serway
and Faughn.]
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Problem 8.

Problem 9.

Problem 13.

7 You are trying to loosen a stuck bolt on your RV using a big
wrench that is 50 cm long. If you hang from the wrench, and your
mass is 55 kg, what is the maximum torque you can exert on the
bolt?

√

8 The figure shows scale drawing of a pair of pliers being
used to crack a nut, with an appropriately reduced centimeter grid.
Warning: do not attempt this at home; it is bad manners. If the
force required to crack the nut is 300 N, estimate the force required
of the person’s hand. . Solution, p. 522

9 Make a rough estimate of the mechanical advantage of the
lever shown in the figure. In other words, for a given amount of
force applied on the handle, how many times greater is the resulting
force on the cork?

10 A physical therapist wants her patient to rehabilitate his
injured elbow by laying his arm flat on a table, and then lifting a
2.1 kg mass by bending his elbow. In this situation, the weight is
33 cm from his elbow. He calls her back, complaining that it hurts
him to grasp the weight. He asks if he can strap a bigger weight
onto his arm, only 17 cm from his elbow. How much mass should
she tell him to use so that he will be exerting the same torque? (He
is raising his forearm itself, as well as the weight.)

√

11 Two horizontal tree branches on the same tree have equal
diameters, but one branch is twice as long as the other. Give a
quantitative comparison of the torques where the branches join the
trunk. [Thanks to Bong Kang.]

12 A ball is connected by a string to a vertical post. The ball is
set in horizontal motion so that it starts winding the string around
the post. Assume that the motion is confined to a horizontal plane,
i.e., ignore gravity. Michelle and Astrid are trying to predict the
final velocity of the ball when it reaches the post. Michelle says
that according to conservation of angular momentum, the ball has
to speed up as it approaches the post. Astrid says that according to
conservation of energy, the ball has to keep a constant speed. Who
is right? [Hint: How is this different from the case where you whirl
a rock in a circle on a string and gradually reel in the string?]

13 A person of weight W stands on the ball of one foot. Find
the tension in the calf muscle and the force exerted by the shinbones
on the bones of the foot, in terms of W , a, and b. For simplicity,
assume that all the forces are at 90-degree angles to the foot, i.e.,
neglect the angle between the foot and the floor.

√
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Problem 14.

Problems 15 and 16.

Problem 17.

14 The rod in the figure is supported by the finger and the
string.
(a) Find the tension, T , in the string, and the force, F , from the
finger, in terms of m, b,L, and g.

√

(b) Comment on the cases b = L and b = L/2.
(c) Are any values of b unphysical?

15 A uniform ladder of mass m and length L leans against a
smooth wall, making an angle q with respect to the ground. The dirt
exerts a normal force and a frictional force on the ladder, producing
a force vector with magnitude F1 at an angle φ with respect to the
ground. Since the wall is smooth, it exerts only a normal force on
the ladder; let its magnitude be F2.
(a) Explain why φ must be greater than θ. No math is needed.
(b) Choose any numerical values you like for m and L, and show
that the ladder can be in equilibrium (zero torque and zero total
force vector) for θ = 45.00◦ and φ = 63.43◦.

16 Continuing the previous problem, find an equation for φ in
terms of θ, and show that m and L do not enter into the equation.
Do not assume any numerical values for any of the variables. You
will need the trig identity sin(a − b) = sin a cos b − sin b cos a. (As
a numerical check on your result, you may wish to check that the
angles given in part b of the previous problem satisfy your equation.)√

?

17 (a) Find the minimum horizontal force which, applied at
the axle, will pull a wheel over a step. Invent algebra symbols for
whatever quantities you find to be relevant, and give your answer
in symbolic form. [Hints: There are four forces on the wheel at
first, but only three when it lifts off. Normal forces are always
perpendicular to the surface of contact. Note that the corner of the
step cannot be perfectly sharp, so the surface of contact for this
force really coincides with the surface of the wheel.]
(b) Under what circumstances does your result become infinite?
Give a physical interpretation.

18 In the 1950’s, serious articles began appearing in magazines
like Life predicting that world domination would be achieved by the
nation that could put nuclear bombs in orbiting space stations, from
which they could be dropped at will. In fact it can be quite difficult
to get an orbiting object to come down. Let the object have energy
E = KE +PE and angular momentum L. Assume that the energy
is negative, i.e., the object is moving at less than escape velocity.
Show that it can never reach a radius less than

rmin =
GMm

2E

(
−1 +

√
1 +

2EL2

G2M2m3

)
.

[Note that both factors are negative, giving a positive result.]
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Problem 19.

19 You wish to determine the mass of a ship in a bottle without
taking it out. Show that this can be done with the setup shown in
the figure, with a scale supporting the bottle at one end, provided
that it is possible to take readings with the ship slid to several
different locations. Note that you can’t determine the position of
the ship’s center of mass just by looking at it, and likewise for the
bottle. In particular, you can’t just say, “position the ship right on
top of the fulcrum” or “position it right on top of the balance.” ?

20 Two atoms will interact via electrical forces between their
protons and electrons. One fairly good approximation to the poten-
tial energy is the Lennard-Jones potential,

PE(r) = k

[(a
r

)12
− 2

(a
r

)6
]

,

where r is the center-to-center distance between the atoms.

Show that (a) there is an equilibrium point at r = a, (b) the equi-
librium is stable, and (c) the energy required to bring the atoms
from their equilibrium separation to infinity is k. [Hints: The first
two parts can be done more easily by setting a = 1, since the value
of a only changes the distance scale. One way to do part b is by
graphing.]

21 Suppose that we lived in a universe in which Newton’s law
of gravity gave forces proportional to r−7 rather than r−2. Which,
if any, of Kepler’s laws would still be true? Which would be com-
pletely false? Which would be different, but in a way that could be
calculated with straightforward algebra?

22 Show that a sphere of radius R that is rolling without slipping
has angular momentum and momentum in the ratio L/p = (2/5)R.

23 Suppose a bowling ball is initially thrown so that it has no
angular momentum at all, i.e., it is initially just sliding down the
lane. Eventually kinetic friction will get it spinning fast enough so
that it is rolling without slipping. Show that the final velocity of the
ball equals 5/7 of its initial velocity. [Hint: You’ll need the result of
problem 22.]

24 Penguins are playful animals. Tux the Penguin invents a new
game using a natural circular depression in the ice. He waddles at
top speed toward the crater, aiming off to the side, and then hops
into the air and lands on his belly just inside its lip. He then belly-
surfs, moving in a circle around the rim. The ice is frictionless, so
his speed is constant. Is Tux’s angular momentum zero, or nonzero?
What about the total torque acting on him? Take the center of the
crater to be the axis. Explain your answers.
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Problem 28.

Problem 29.

Problem 30.

Problem 32

25 A massless rod of length ` has weights, each of mass m, at-
tached to its ends. The rod is initially put in a horizontal position,
and laid on an off-center fulcrum located at a distance b from the
rod’s center. The rod will topple. (a) Calculate the total gravita-
tional torque on the rod directly, by adding the two torques. (b)
Verify that this gives the same result as would have been obtained
by taking the entire gravitational force as acting at the center of
mass.

26 Use analogies to find the equivalents of the following equations
for rotation in a plane:

K = p2/2m

∆x = vo∆t+ (1/2)a∆t2

W = F∆x

Example: v = ∆x/∆t→ ω = ∆θ/∆t

27 Prove the parallel axis theorem stated on page 445.

28 The box shown in the figure is being accelerated by pulling
on it with the rope.
(a) Assume the floor is frictionless. What is the maximum force
that can be applied without causing the box to tip over?

. Hint, p. 508
√

(b) Repeat part a, but now let the coefficient of friction be µ.
√

(c) What happens to your answer to part b when the box is suffi-
ciently tall? How do you interpret this?

29 (a) The bar of mass m is attached at the wall with a hinge,
and is supported on the right by a massless cable. Find the tension,
T , in the cable in terms of the angle θ.

√

(b) Interpreting your answer to part a, what would be the best angle
to use if we wanted to minimize the strain on the cable?
(c) Again interpreting your answer to part a, for what angles does
the result misbehave mathematically? Interpet this physically.

30 (a) The two identical rods are attached to one another with
a hinge, and are supported by the two massless cables. Find the
angle α in terms of the angle β, and show that the result is a purely
geometric one, independent of the other variables involved.

√

(b) Using your answer to part a, sketch the configurations for β → 0,
β = 45◦, and β = 90◦. Do your results make sense intuitively?

31 (a) Find the angular velocities of the earth’s rotation and of
the earth’s motion around the sun.

√

(b) Which motion involves the greater acceleration?

32 Give a numerical comparison of the two molecules’ moments
of inertia for rotation in the plane of the page about their centers
of mass.
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Problem 39

33 Find the angular momentum of a particle whose position is
r = 3x̂− ŷ+ ẑ (in meters) and whose momentum is p = −2x̂+ ŷ+ ẑ
(in kg·m/s).

√

34 Find a vector that is perpendicular to both of the following
two vectors:

x̂ + 2ŷ + 3ẑ

4x̂ + 5ŷ + 6ẑ

√

35 Prove property (3) of the vector cross product from the
theorem on page 443.

36 Prove the anticommutative property of the vector cross prod-
uct, A×B = −B×A, using the expressions for the components of
the cross product.

37 Find three vectors with which you can demonstrate that the
vector cross product need not be associative, i.e., that A× (B×C)
need not be the same as (A×B)×C.

38 Which of the following expressions make sense, and which are
nonsense? For those that make sense, indicate whether the result is
a vector or a scalar.
(a) (A×B)×C
(b) (A×B) ·C
(c) (A ·B)×C

39 (a) As suggested in the figure, find the area of the infinites-
imal region expressed in polar coordinates as lying between r and
r + dr and between θ and θ + dθ.

√

(b) Generalize this to find the infinitesimal element of volume in
cylindrical coordinates (r, θ, z), where the Cartesian z axis is per-
pendicular to the directions measured by r and θ.

√

(c) Find the moment of inertia for rotation about its axis of a cone
whose mass is M , whose height is h, and whose base has a radius
b.

√

40 Find the moment of inertia of a solid rectangular box of mass
M and uniform density, whose sides are of length a, b, and c, for
rotation about an axis through its center parallel to the edges of
length a.

√
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41 The nucleus 168Er (erbium-168) contains 68 protons (which
is what makes it a nucleus of the element erbium) and 100 neutrons.
It has an ellipsoidal shape like an American football, with one long
axis and two short axes that are of equal diameter. Because this
is a subatomic system, consisting of only 168 particles, its behavior
shows some clear quantum-mechanical properties. It can only have
certain energy levels, and it makes quantum leaps between these
levels. Also, its angular momentum can only have certain values,
which are all multiples of 2.109× 10−34 kg ·m2/s. The table shows
some of the observed angular momenta and energies of 168Er, in SI
units (kg ·m2/s and joules).
L× 1034 E × 1014

0 0
2.109 1.2786
4.218 4.2311
6.327 8.7919
8.437 14.8731
10.546 22.3798
12.655 31.135
14.764 41.206
16.873 52.223

(a) These data can be described to a good approximation as a rigid
end-over-end rotation. Estimate a single best-fit value for the mo-
ment of inertia from the data, and check how well the data agree
with the assumption of rigid-body rotation. . Hint, p. 508

√

(b) Check whether this moment of inertia is on the right order of
magnitude. The moment of inertia depends on both the size and
the shape of the nucleus. For the sake of this rough check, ignore
the fact that the nucleus is not quite spherical. To estimate its size,
use the fact that a neutron or proton has a volume of about 1 fm3

(one cubic femtometer, where 1 fm = 10−15 m), and assume they
are closely packed in the nucleus.

42 (a) Prove the identity a × (b × c) = b(a · c) − c(a · b)
by expanding the product in terms of its components. Note that
because the x, y, and z components are treated symmetrically in
the definitions of the vector cross product, it is only necessary to
carry out the proof for the x component of the result.
(b) Applying this to the angular momentum of a rigidly rotating
body, L =

∫
r× (ω× r) dm, show that the diagonal elements of the

moment of inertia tensor can be expressed as, e.g., Ixx =
∫

(y2 +
z2)dm.
(c) Find the diagonal elements of the moment of inertia matrix of
an ellipsoid with axes of lengths a, b, and c, in the principal-axis
frame, and with the axis at the center.

√
?
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Problem 44.

43 When we talk about rigid-body rotation, the concept of
a perfectly rigid body can only be an idealization. In reality, any
object will compress, expand, or deform to some extent when sub-
jected to the strain of rotation. However, if we let it settle down for
a while, perhaps it will reach a new equilibrium. As an example,
suppose we fill a centrifuge tube with some compressible substance
like shaving cream or Wonder Bread. We can model the contents of
the tube as a one-dimensional line of mass, extending from r = 0 to
r = `. Once the rotation starts, we expect that the contents will be
most compressed near the “floor” of the tube at r = `; this is both
because the inward force required for circular motion increases with
r for a fixed ω, and because the part at the floor has the greatest
amount of material pressing “down” (actually outward) on it. The
linear density dm/dr, in units of kg/m, should therefore increase as
a function of r. Suppose that we have dm/dr = µer/`, where µ is a
constant. Find the moment of inertia.

√

44 Two bars of length L are connected with a hinge and placed
on a frictionless cylinder of radius r. (a) Show that the angle θ shown
in the figure is related to the unitless ratio r/L by the equation

r

L
=

cos2 θ

2 tan θ
.

(b) Discuss the physical behavior of this equation for very large and
very small values of r/L. ?

45 Let two sides of a triangle be given by the vectors A and
B, with their tails at the origin, and let mass m be uniformly dis-
tributed on the interior of the triangle. (a) Show that the distance
of the triangle’s center of mass from the intersection of sides A and
B is given by 1

3 |A + B|.
(b) Consider the quadrilateral with mass 2m, and vertices at the
origin, A, B, and A + B. Show that its moment of inertia, for
rotation about an axis perpendicular to it and passing through its
center of mass, is m

6 (A2 +B2).
(c) Show that the moment of inertia for rotation about an axis per-
pendicular to the plane of the original triangle, and passing through
its center of mass, is m

18(A2 +B2−A ·B). Hint: Combine the results
of parts a and b with the result of problem 27. ?

46 In example 23 on page 429, prove that if the rod is sufficiently
thin, it can be toppled without scraping on the floor.

. Solution, p. 522 ?
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47 A yo-yo of total mass m consists of two solid cylinders
of radius R, connected by a small spindle of negligible mass and
radius r. The top of the string is held motionless while the string
unrolls from the spindle. Show that the acceleration of the yo-yo
is g/(1 + R2/2r2). [Hint: The acceleration and the tension in the
string are unknown. Use τ = ∆L/∆t and F = ma to determine
these two unknowns.] ?

48 We have n identical books of width w, and we wish to stack
them at the edge of a table so that they extend the maximum possi-
ble distance Ln beyond the edge. Surprisingly, it is possible to have
values of Ln that are greater than w, even with fairly small n. For
large n, however, Ln begins to grow very slowly. Our goal is to find
Ln for a given n. (We assume here, as everyone seems to do in pos-
ing this classic problem, that only one book is ever used at a given
height. I do not know of any rigorous proof that applies when this
restriction is relaxed, but I suspect that the result is unaffected.) (a)
Use proof by induction to find Ln, expressing your result as a sum.
(b) Find a sufficiently tight lower bound on this sum, as a closed-
form expression, to prove that 1,202,604 books suffice for L > 7w.

?

49 A certain function f takes two vectors as inputs and gives an
output that is also a vector. The function can be defined in such a
way that it is rotationally invariant. It takes on the following values
for the following inputs:

f(x̂, ŷ) = −ẑ

f(2x̂, ŷ) = −8ẑ

f(x̂, 2ŷ) = −2ẑ

Prove that the given information uniquely determines f , and give
an explicit expression for it. ?

50 (a) Find the moment of inertia of a uniform square of mass
m and with sides of length b, for rotation in its own plane, about
one of its corners.
(b) The square is balanced on one corner on a frictionless surface.
An infinitesimal perturbation causes it to topple. Find its angular
velocity at the moment when its side slaps the surface. ?
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Exercise 15: Torque
Equipment:

• rulers with holes in them

• spring scales (two per group)

While one person holds the pencil which forms the axle for the ruler, the other members of the
group pull on the scale and take readings. In each case, calculate the total torque on the ruler,
and find out whether it equals zero to roughly within the accuracy of the experiment. Finish
the calculations for each part before moving on to the next one.
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Vibrations and resonance
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The vibrations of this electric bass
string are converted to electrical
vibrations, then to sound vibra-
tions, and finally to vibrations of
our eardrums.

Chapter 16

Vibrations

Dandelion. Cello. Read those two words, and your brain instantly
conjures a stream of associations, the most prominent of which have
to do with vibrations. Our mental category of “dandelion-ness” is
strongly linked to the color of light waves that vibrate about half a
million billion times a second: yellow. The velvety throb of a cello
has as its most obvious characteristic a relatively low musical pitch
— the note you are spontaneously imagining right now might be
one whose sound vibrations repeat at a rate of a hundred times a
second.

Evolution has designed our two most important senses around
the assumption that not only will our environment be drenched with
information-bearing vibrations, but in addition those vibrations will
often be repetitive, so that we can judge colors and pitches by the
rate of repetition. Granting that we do sometimes encounter non-
repeating waves such as the consonant “sh,” which has no recogniz-
able pitch, why was Nature’s assumption of repetition nevertheless
so right in general?

Repeating phenomena occur throughout nature, from the orbits
of electrons in atoms to the reappearance of Halley’s Comet every 75
years. Ancient cultures tended to attribute repetitious phenomena
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a / If we try to draw a non-
repeating orbit for Halley’s
Comet, it will inevitably end up
crossing itself.

b / A spring has an equilib-
rium length, 1, and can be
stretched, 2, or compressed, 3. A
mass attached to the spring can
be set into motion initially, 4, and
will then vibrate, 4-13.

like the seasons to the cyclical nature of time itself, but we now
have a less mystical explanation. Suppose that instead of Halley’s
Comet’s true, repeating elliptical orbit that closes seamlessly upon
itself with each revolution, we decide to take a pen and draw a
whimsical alternative path that never repeats. We will not be able to
draw for very long without having the path cross itself. But at such
a crossing point, the comet has returned to a place it visited once
before, and since its potential energy is the same as it was on the
last visit, conservation of energy proves that it must again have the
same kinetic energy and therefore the same speed. Not only that,
but the comet’s direction of motion cannot be randomly chosen,
because angular momentum must be conserved as well. Although
this falls short of being an ironclad proof that the comet’s orbit must
repeat, it no longer seems surprising that it does.

Conservation laws, then, provide us with a good reason why
repetitive motion is so prevalent in the universe. But it goes deeper
than that. Up to this point in your study of physics, I have been
indoctrinating you with a mechanistic vision of the universe as a
giant piece of clockwork. Breaking the clockwork down into smaller
and smaller bits, we end up at the atomic level, where the electrons
circling the nucleus resemble — well, little clocks! From this point
of view, particles of matter are the fundamental building blocks
of everything, and vibrations and waves are just a couple of the
tricks that groups of particles can do. But at the beginning of
the 20th century, the tables were turned. A chain of discoveries
initiated by Albert Einstein led to the realization that the so-called
subatomic “particles” were in fact waves. In this new world-view,
it is vibrations and waves that are fundamental, and the formation
of matter is just one of the tricks that waves can do.

16.1 Period, frequency, and amplitude

Figure b shows our most basic example of a vibration. With no
forces on it, the spring assumes its equilibrium length, b/1. It can
be stretched, 2, or compressed, 3. We attach the spring to a wall
on the left and to a mass on the right. If we now hit the mass with
a hammer, 4, it oscillates as shown in the series of snapshots, 4-13.
If we assume that the mass slides back and forth without friction
and that the motion is one-dimensional, then conservation of energy
proves that the motion must be repetitive. When the block comes
back to its initial position again, 7, its potential energy is the same
again, so it must have the same kinetic energy again. The motion
is in the opposite direction, however. Finally, at 10, it returns to its
initial position with the same kinetic energy and the same direction
of motion. The motion has gone through one complete cycle, and
will now repeat forever in the absence of friction.

The usual physics terminology for motion that repeats itself over
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c / Position-versus-time graphs
for half a period and a full period.

d / The locomotive’s wheels
spin at a frequency of f cycles
per second, which can also
be described as ω radians per
second. The mechanical link-
ages allow the linear vibration of
the steam engine’s pistons, at
frequency f , to drive the wheels.

e / Example 1.

and over is periodic motion, and the time required for one repetition
is called the period, T . (The symbol P is not used because of the
possible confusion with momentum.) One complete repetition of the
motion is called a cycle.

We are used to referring to short-period sound vibrations as
“high” in pitch, and it sounds odd to have to say that high pitches
have low periods. It is therefore more common to discuss the rapid-
ity of a vibration in terms of the number of vibrations per second,
a quantity called the frequency, f . Since the period is the number
of seconds per cycle and the frequency is the number of cycles per
second, they are reciprocals of each other,

f = 1/T .

The forms of various equations turn out to be simpler when
they are expressed not in terms of f but in terms of ω = 2πf .
It’s not a coincidence that this relationship looks the same as the
one relating angular velocity and frequency in circular motion. In
machines, mechanical linkages are used to convert back and forth
between vibrational motion and circular motion. For example, a car
engine’s pistons oscillate in their cylinders at a frequency f , driving
the crankshaft at the same frequency f . Either of these motions can
be described using ω instead of f , even though only in the case of
the crankshaft’s rotational motion does it make sense to interpret
ω as the number of radians per second. When the motion is not
rotational, we usually refer to ω as the angular frequency, and we
often use the word “frequency” to mean either f or ω, relying on
context to make the meaning clear.

A carnival game example 1
In the carnival game shown in figure e, the rube is supposed to
push the bowling ball on the track just hard enough so that it goes
over the hump and into the valley, but does not come back out
again. If the only types of energy involved are kinetic and poten-
tial, this is impossible. Suppose you expect the ball to come back
to a point such as the one shown with the dashed outline, then
stop and turn around. It would already have passed through this
point once before, going to the left on its way into the valley. It
was moving then, so conservation of energy tells us that it can-
not be at rest when it comes back to the same point. The motion
that the customer hopes for is physically impossible. There is
a physically possible periodic motion in which the ball rolls back
and forth, staying confined within the valley, but there is no way
to get the ball into that motion beginning from the place where we
start. There is a way to beat the game, though. If you put enough
spin on the ball, you can create enough kinetic friction so that a
significant amount of heat is generated. Conservation of energy
then allows the ball to be at rest when it comes back to a point
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f / 1. The amplitude of the
vibrations of the mass on a spring
could be defined in two different
ways. It would have units of
distance. 2. The amplitude of a
swinging pendulum would more
naturally be defined as an angle.

like the outlined one, because kinetic energy has been converted
into heat.

Period and frequency of a fly’s wing-beats example 2
A Victorian parlor trick was to listen to the pitch of a fly’s buzz, re-
produce the musical note on the piano, and announce how many
times the fly’s wings had flapped in one second. If the fly’s wings
flap, say, 200 times in one second, then the frequency of their
motion is f = 200/1 s = 200 s−1. The period is one 200th of a
second, T = 1/f = (1/200) s = 0.005 s.

Units of inverse second, s−1, are awkward in speech, so an abbre-
viation has been created. One Hertz, named in honor of a pioneer
of radio technology, is one cycle per second. In abbreviated form,
1 Hz = 1 s−1. This is the familiar unit used for the frequencies on
the radio dial.

Frequency of a radio station example 3
. KKJZ’s frequency is 88.1 MHz. What does this mean, and what
period does this correspond to?

. The metric prefix M- is mega-, i.e., millions. The radio waves
emitted by KKJZ’s transmitting antenna vibrate 88.1 million times
per second. This corresponds to a period of

T = 1/f = 1.14× 10−8 s .

This example shows a second reason why we normally speak in
terms of frequency rather than period: it would be painful to have
to refer to such small time intervals routinely. I could abbreviate
by telling people that KKJZ’s period was 11.4 nanoseconds, but
most people are more familiar with the big metric prefixes than
with the small ones.

Units of frequency are also commonly used to specify the speeds
of computers. The idea is that all the little circuits on a computer
chip are synchronized by the very fast ticks of an electronic clock, so
that the circuits can all cooperate on a task without getting ahead
or behind. Adding two numbers might require, say, 30 clock cycles.
Microcomputers these days operate at clock frequencies of about a
gigahertz.

We have discussed how to measure how fast something vibrates,
but not how big the vibrations are. The general term for this is
amplitude, A. The definition of amplitude depends on the system
being discussed, and two people discussing the same system may
not even use the same definition. In the example of the block on the
end of the spring, f/1, the amplitude will be measured in distance
units such as cm. One could work in terms of the distance traveled
by the block from the extreme left to the extreme right, but it
would be somewhat more common in physics to use the distance
from the center to one extreme. The former is usually referred to as
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g / Sinusoidal and non-sinusoidal
vibrations.

the peak-to-peak amplitude, since the extremes of the motion look
like mountain peaks or upside-down mountain peaks on a graph of
position versus time.

In other situations we would not even use the same units for am-
plitude. The amplitude of a child on a swing, or a pendulum, f/2,
would most conveniently be measured as an angle, not a distance,
since her feet will move a greater distance than her head. The elec-
trical vibrations in a radio receiver would be measured in electrical
units such as volts or amperes.

16.2 Simple harmonic motion
Why are sine-wave vibrations so common?

If we actually construct the mass-on-a-spring system discussed
in the previous section and measure its motion accurately, we will
find that its x−t graph is nearly a perfect sine-wave shape, as shown
in figure g/1. (We call it a “sine wave” or “sinusoidal” even if it is
a cosine, or a sine or cosine shifted by some arbitrary horizontal
amount.) It may not be surprising that it is a wiggle of this general
sort, but why is it a specific mathematically perfect shape? Why is
it not a sawtooth shape like 2 or some other shape like 3? The mys-
tery deepens as we find that a vast number of apparently unrelated
vibrating systems show the same mathematical feature. A tuning
fork, a sapling pulled to one side and released, a car bouncing on
its shock absorbers, all these systems will exhibit sine-wave motion
under one condition: the amplitude of the motion must be small.

It is not hard to see intuitively why extremes of amplitude would
act differently. For example, a car that is bouncing lightly on its
shock absorbers may behave smoothly, but if we try to double the
amplitude of the vibrations the bottom of the car may begin hitting
the ground, g/4. (Although we are assuming for simplicity in this
chapter that energy is never dissipated, this is clearly not a very
realistic assumption in this example. Each time the car hits the
ground it will convert quite a bit of its potential and kinetic en-
ergy into heat and sound, so the vibrations would actually die out
quite quickly, rather than repeating for many cycles as shown in the
figure.)

The key to understanding how an object vibrates is to know how
the force on the object depends on the object’s position. If an object
is vibrating to the right and left, then it must have a leftward force
on it when it is on the right side, and a rightward force when it is on
the left side. In one dimension, we can represent the direction of the
force using a positive or negative sign, and since the force changes
from positive to negative there must be a point in the middle where
the force is zero. This is the equilibrium point, where the object
would stay at rest if it was released at rest. For convenience of
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h / The force exerted by an
ideal spring, which behaves
exactly according to Hooke’s law.

notation throughout this chapter, we will define the origin of our
coordinate system so that x equals zero at equilibrium.

The simplest example is the mass on a spring, for which the force
on the mass is given by Hooke’s law,

F = −kx .

We can visualize the behavior of this force using a graph of F versus
x, as shown in figure h. The graph is a line, and the spring constant,
k, is equal to minus its slope. A stiffer spring has a larger value of
k and a steeper slope. Hooke’s law is only an approximation, but
it works very well for most springs in real life, as long as the spring
isn’t compressed or stretched so much that it is permanently bent
or damaged.

The following important theorem relates the motion graph to
the force graph.

Theorem: A linear force graph makes a sinusoidal motion
graph.

If the total force on a vibrating object depends only on the
object’s position, and is related to the objects displacement
from equilibrium by an equation of the form F = −kx, then
the object’s motion displays a sinusoidal graph with frequency
ω =

√
k/m.

Proof: By Newton’s second law, −kx = ma, so we need a function
x(t) that satisfies the equation d2x/dt2 = −cx, where for conve-
nience we write c for k/m. This type of equation is called a differ-
ential equation, because it relates a function to its own derivative
(in this case the second derivative).

Just to make things easier to think about, suppose that we hap-
pen to have an oscillator with c = 1. Then our goal is to find
a function whose second derivative is equal to minus the original
function. We know of two such functions, the sine and the cosine.
These two solutions can be combined to make anything of the form
P cos t + Q cos t, where P and Q are constants, and the result will
still be a solution. Using trig identities, such an expression can
always be rewritten as A cos(t+ δ).

Now what about the more general case where c need not equal
1? The role of c in d2x/dt2 = −cx is to set the time scale. For
example, suppose we produce a fake video of an object oscillating
according to A cos(t + δ), which violates Newton’s second law be-
cause c doesn’t equal 1, so the acceleration is too small. We can
always make the video physically accurate by speeding it up. This
suggests generalizing the solution to A cos(ωt + δ). Plugging in to
the differential equation, we find that ω =

√
k/m, and T = 2π/ω

brings us to the claimed result.

We’ve proved that anything of this form is a solution, but we
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j / Seen from close up, any
F − x curve looks like a line.

i / Because simple harmonic mo-
tion involves sinusoidal functions,
it is equivalent to circular motion
that has been projected into one
dimension. This figure shows a
simulated view of Jupiter and its
four largest moons at intervals of
three hours. Seen from the side
from within the plane of the solar
system, the circular orbits appear
linear. In coordinates with the ori-
gin at Jupiter, a moon has coordi-
nates x = r cos θ and y = r sin θ,
where θ = ωt . If the view is
along the y axis, then we see only
the x motion, which is of the form
A cos(ωt).

haven’t shown that any solution must be of this form. Physically,
this must be true because the motion is fully determined by the
oscillator’s initial position and initial velocity, which can always be
matched by choosing A and δ appropriately. Mathematically, the
uniqueness result is a standard one about second-order differential
equations.

This may seem like only an obscure theorem about the mass-on-
a-spring system, but figure j shows it to be far more general than
that. Figure j/1 depicts a force curve that is not a straight line. A
system with this F −x curve would have large-amplitude vibrations
that were complex and not sinusoidal. But the same system would
exhibit sinusoidal small-amplitude vibrations. This is because any
curve looks linear from very close up. If we magnify the F − x
graph as shown in figure j/2, it becomes very difficult to tell that
the graph is not a straight line. If the vibrations were confined to
the region shown in j/2, they would be very nearly sinusoidal. This
is the reason why sinusoidal vibrations are a universal feature of
all vibrating systems, if we restrict ourselves to small amplitudes.
The theorem is therefore of great general significance. It applies
throughout the universe, to objects ranging from vibrating stars to
vibrating nuclei. A sinusoidal vibration is known as simple harmonic
motion.

This relates to the fundamental idea behind differential calcu-
lus, which is that up close, any smooth function looks linear. To
characterize small oscillations about the equilibrium at x = 0 in fig-
ure h, all we need to know is the derivative dF/dx|0, which equals
−k. That is, a force function F (x) has no “individuality” except as
defined by k.
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k / Three functions with the
same curvature at x = 0.

l / Example 5. The rod piv-
ots on the hinge at the bottom.

Spring constant related to potential energy example 4
The same idea about lack of individuality can be expressed in
terms of energy.

On a graph of PE versus x , an equilibrium is a local minimum.
We can imagine an oscillation about this equilibrium point as if a
marble was rolling back and forth in the depression of the graph.
Let’s choose a coordinate system in which x = 0 is the equilib-
rium, and since the potential energy is only well defined up to an
additive constant, we’ll simply define it to be zero at equilibrium:

PE(0) = 0

Since x = 0 is a local minimum,

dPE
dx

(0) = 0 .

There are still infinitely many functions that could satisfy these
criteria, including the three shown in figure k, which are x2/2,
x2/2(1+x2), and (e3x +e−3x−2)/18. Note, however, how all three
functions are virtually identical right near the minimum. That’s be-
cause they all have the same curvature. More specifically, each
function has its second derivative equal to 1 at x = 0, and the
second derivative is a measure of curvature. Since the F =
−dPE/dx and k = −dPE/dx , k equals the second derivative
of the PE,

d2PE
dx2 (0) = k .

As shown in figure k, any two functions that have PE(0) = 0,
dPE/dx = 0, and d2PE/dx2 = k , with the same value of k , are
virtually indistinguishable for small values of x , so if we want to
analyze small oscillations, it doesn’t even matter which function
we assume. For simplicity, we can always use PE(x) = (1/2)kx2,
which is the form that gives a constant second derivative.

A spring and a lever example 5
. What is the period of small oscillations of the system shown in
the figure? Neglect the mass of the lever and the spring. Assume
that the spring is so stiff that gravity is not an important effect.
The spring is relaxed when the lever is vertical.

. This is a little tricky, because the spring constant k , although it is
relevant, is not the k we should be putting into the equation ω =√

k/m. I find this easier to understand by working with energy
rather than force. (Another method would be to use torque, as in
problem 15.) The k that goes into

√
k/m has to be the second

derivative of PE with respect to the position, x , of the mass that’s
moving. The energy PE stored in the spring depends on how far
the tip of the lever is from the center. This distance equals (L/b)x ,
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m / Example 6.

so the energy in the spring is

PE =
1
2

k
(

L
b

x
)2

=
kL2

2b2 x2 ,

and the k we have to put in T = 2π
√

m/k is

d2PE
dx2 =

kL2

b2 .

The result is

ω =

√
kL2

mb2

=
L
b

√
k
m

The leverage of the lever makes it as if the spring was stronger,
decreasing the period of the oscillations by a factor of b/L.

Water in a U-shaped tube example 6
. The U-shaped tube in figure m has cross-sectional area A, and
the density of the water inside is ρ. Find the gravitational poten-
tial energy as a function of the quantity y shown in the figure,
show that there is an equilibrium at y=0, and find the frequency
of oscillation of the water.

. Potential energy is only well defined up to an additive constant.
To fix this constant, let’s define PE to be zero when y=0. The
difference between PE(y ) and PE(0) is the energy that would be
required to lift a water column of height y out of the right side, and
place it above the dashed line, on the left side, raising it through
a height y . This water column has height y and cross-sectional
area A, so its volume is Ay , its mass is ρAy , and the energy
required is mgy=(ρAy )gy=ρgAy2. We then have PE(y ) = PE(0)+
ρgAy2 = ρgAy2.

The “spring constant” is

k =
d2PE
dy2

= 2ρgA .

This is an interesting example, because k can be calculated with-
out any approximations, but the kinetic energy requires an ap-
proximation, because we don’t know the details of the pattern
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of flow of the water. It could be very complicated. There will
be a tendency for the water near the walls to flow more slowly
due to friction, and there may also be swirling, turbulent motion.
However, if we make the approximation that all the water moves
with the same velocity as the surface, dy/dt , then the mass-on-
a-spring analysis applies. Letting L be the total length of the filled
part of the tube, the mass is ρLA, and we have

ω =
√

k/m

=

√
2ρgA
ρLA

=

√
2g
L

.

Period is approximately independent of amplitude, if the
amplitude is small.

Until now we have not even mentioned the most counterintuitive
aspect of the equation ω =

√
k/m: it does not depend on amplitude

at all. Intuitively, most people would expect the mass-on-a-spring
system to take longer to complete a cycle if the amplitude was larger.
(We are comparing amplitudes that are different from each other,
but both small enough that the theorem applies.) In fact the larger-
amplitude vibrations take the same amount of time as the small-
amplitude ones. This is because at large amplitudes, the force is
greater, and therefore accelerates the object to higher speeds.

Legend has it that this fact was first noticed by Galileo during
what was apparently a less than enthralling church service. A gust
of wind would now and then start one of the chandeliers in the
cathedral swaying back and forth, and he noticed that regardless
of the amplitude of the vibrations, the period of oscillation seemed
to be the same. Up until that time, he had been carrying out his
physics experiments with such crude time-measuring techniques as
feeling his own pulse or singing a tune to keep a musical beat. But
after going home and testing a pendulum, he convinced himself that
he had found a superior method of measuring time. Even without
a fancy system of pulleys to keep the pendulum’s vibrations from
dying down, he could get very accurate time measurements, because
the gradual decrease in amplitude due to friction would have no
effect on the pendulum’s period. (Galileo never produced a modern-
style pendulum clock with pulleys, a minute hand, and a second
hand, but within a generation the device had taken on the form
that persisted for hundreds of years after.)
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The pendulum example 7
. Compare the frequencies of pendula having bobs with different
masses.

. From the equation ω =
√

k/m, we might expect that a larger
mass would lead to a lower frequency. However, increasing the
mass also increases the forces that act on the pendulum: gravity
and the tension in the string. This increases k as well as m, so
the frequency of a pendulum is independent of m.

Section 16.2 Simple harmonic motion 471



Summary
Selected vocabulary
periodic motion . motion that repeats itself over and over
period . . . . . . . the time required for one cycle of a periodic

motion
frequency . . . . . the number of cycles per second, the inverse of

the period
amplitude . . . . the amount of vibration, often measured from

the center to one side; may have different units
depending on the nature of the vibration

simple harmonic
motion . . . . . .

motion whose x− t graph is a sine wave

Notation
T . . . . . . . . . period
f . . . . . . . . . . frequency
A . . . . . . . . . amplitude
k . . . . . . . . . . the slope of the graph of F versus x, where

F is the total force acting on an object and
x is the object’s position; for a spring, this is
known as the spring constant.

ω (Greek letter
“omega”) . . . . .

2πf

Other terminology and notation
ν . . . . . . . . . . The Greek letter ν, nu, is used in many books

for frequency.

Summary

Periodic motion is common in the world around us because of
conservation laws. An important example is one-dimensional motion
in which the only two forms of energy involved are potential and
kinetic; in such a situation, conservation of energy requires that an
object repeat its motion, because otherwise when it came back to
the same point, it would have to have a different kinetic energy and
therefore a different total energy.

Not only are periodic vibrations very common, but small-amplitude
vibrations are always sinusoidal as well. That is, the x− t graph is a
sine wave. This is because the graph of force versus position will al-
ways look like a straight line on a sufficiently small scale. This type
of vibration is called simple harmonic motion. In simple harmonic
motion, the frequency is independent of the amplitude, and is given
by

ω =
√
k/m .
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Problem 3.

Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 This problem has been deleted.

2 Many single-celled organisms propel themselves through water
with long tails, which they wiggle back and forth. (The most obvious
example is the sperm cell.) The frequency of the tail’s vibration is
typically about 10-15 Hz. To what range of periods does this range
of frequencies correspond?

3 The figure shows the oscillation of a microphone in response
to the author whistling the musical note “A.” The horizontal axis,
representing time, has a scale of 1.0 ms per square. Find the period
T , the frequency f , and the angular frequency ω.

√

4 (a) Pendulum 2 has a string twice as long as pendulum 1. If
we define x as the distance traveled by the bob along a circle away
from the bottom, how does the k of pendulum 2 compare with the
k of pendulum 1? Give a numerical ratio. [Hint: the total force
on the bob is the same if the angles away from the bottom are the
same, but equal angles do not correspond to equal values of x.]

(b) Based on your answer from part (a), how does the period of pen-
dulum 2 compare with the period of pendulum 1? Give a numerical
ratio.

5 A pneumatic spring consists of a piston riding on top of the
air in a cylinder. The upward force of the air on the piston is given
by Fair = ax−β, where β = 1.4 and a is a constant with funny
units of N ·m1.4. For simplicity, assume the air only supports the
weight, FW , of the piston itself, although in practice this device
is used to support some other object. The equilibrium position,
x0, is where FW equals −Fair. (Note that in the main text I have
assumed the equilibrium position to be at x = 0, but that is not the
natural choice here.) Assume friction is negligible, and consider a
case where the amplitude of the vibrations is very small. Find the
angular frequency of oscillation.

√
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Problem 9.

6 Verify that energy is conserved in simple harmonic motion.

7 Consider the same pneumatic piston described in problem
5, but now imagine that the oscillations are not small. Sketch a
graph of the total force on the piston as it would appear over this
wider range of motion. For a wider range of motion, explain why
the vibration of the piston about equilibrium is not simple harmonic
motion, and sketch a graph of x vs t, showing roughly how the curve
is different from a sine wave. [Hint: Acceleration corresponds to the
curvature of the x − t graph, so if the force is greater, the graph
should curve around more quickly.]

8 Archimedes’ principle states that an object partly or wholly
immersed in fluid experiences a buoyant force equal to the weight
of the fluid it displaces. For instance, if a boat is floating in water,
the upward pressure of the water (vector sum of all the forces of
the water pressing inward and upward on every square inch of its
hull) must be equal to the weight of the water displaced, because
if the boat was instantly removed and the hole in the water filled
back in, the force of the surrounding water would be just the right
amount to hold up this new “chunk” of water. (a) Show that a cube
of mass m with edges of length b floating upright (not tilted) in a
fluid of density ρ will have a draft (depth to which it sinks below
the waterline) h given at equilibrium by h0 = m/b2ρ. (b) Find the
total force on the cube when its draft is h, and verify that plugging
in h − h0 gives a total force of zero. (c) Find the cube’s period of
oscillation as it bobs up and down in the water, and show that can
be expressed in terms of and g only.

√

9 The figure shows a see-saw with two springs at Codornices Park
in Berkeley, California. Each spring has spring constant k, and a
kid of mass m sits on each seat. (a) Find the period of vibration in
terms of the variables k, m, a, and b. (b) Discuss the special case
where a = b, rather than a > b as in the real see-saw. (c) Show that
your answer to part a also makes sense in the case of b = 0.

√
?

10 Show that the equation ω =
√
k/m has units that make

sense.

474 Chapter 16 Vibrations



Problem 13.

Problem 14.

11 A hot scientific question of the 18th century was the shape
of the earth: whether its radius was greater at the equator than at
the poles, or the other way around. One method used to attack this
question was to measure gravity accurately in different locations
on the earth using pendula. If the highest and lowest latitudes
accessible to explorers were 0 and 70 degrees, then the the strength
of gravity would in reality be observed to vary over a range from
about 9.780 to 9.826 m/s2. This change, amounting to 0.046 m/s2,
is greater than the 0.022 m/s2 effect to be expected if the earth
had been spherical. The greater effect occurs because the equator
feels a reduction due not just to the acceleration of the spinning
earth out from under it, but also to the greater radius of the earth
at the equator. What is the accuracy with which the period of a
one-second pendulum would have to be measured in order to prove
that the earth was not a sphere, and that it bulged at the equator?

12 A certain mass, when hung from a certain spring, causes
the spring to stretch by an amount h compared to its equilibrium
length. If the mass is displaced vertically from this equilibrium, it
will oscillate up and down with a period Tosc. Give a numerical
comparison between Tosc and Tfall, the time required for the mass
to fall from rest through a height h, when it isn’t attached to the
spring. .

√

13 Find the period of vertical oscillations of the mass m. The
spring, pulley, and ropes have negligible mass.

. Hint, p. 509
√

14 The equilibrium length of each spring in the figure is b, so
when the mass m is at the center, neither spring exerts any force
on it. When the mass is displaced to the side, the springs stretch;
their spring constants are both k.
(a) Find the energy, U , stored in the springs, as a function of y, the
distance of the mass up or down from the center.

√

(b) Show that the period of small up-down oscillations is infinite.
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15 For a one-dimensional harmonic oscillator, the solution to
the energy conservation equation,

U +K =
1

2
kx2 +

1

2
mv2 = constant ,

is an oscillation with frequency ω =
√
k/m.

Now consider an analogous system consisting of a bar magnet hung
from a thread, which acts like a magnetic compass. A normal com-
pass is full of water, so its oscillations are strongly damped, but
the magnet-on-a-thread compass has very little friction, and will os-
cillate repeatedly around its equilibrium direction. The magnetic
energy of the bar magnet is

U = −Bm cos θ ,

where B is a constant that measures the strength of the earth’s
magnetic field, m is a constant that parametrizes the strength of
the magnet, and θ is the angle, measured in radians, between the
bar magnet and magnetic north. The equilibrium occurs at θ = 0,
which is the minimum of U .

(a) Problem 26 on p. 453 gave some examples of how to construct
analogies between rotational and linear motion. Using the same
technique, translate the equation defining the linear quantity k to
one that defines an analogous angular one κ (Greek letter kappa).
Applying this to the present example, find an expression for κ. (As-
sume the thread is so thin that its stiffness does not have any sig-
nificant effect compared to earth’s magnetic field.)
(b) Find the frequency of the compass’s vibrations.

16 A mass m on a spring oscillates around an equilibrium at
x = 0. Any function F (x) with an equilibrium at x = 0, F (0) = 0,
can be approximated as F (x) = −kx, and if the spring’s behavior
is symmetric with respect to positive and negative values of x, so
that F (−x) = −F (x), then the next level of improvement in such
an approximation would be F (x) = −kx − bx3. The general idea
here is that any smooth function can be approximated locally by a
polynomial, and if you want a better approximation, you can use a
polynomial with more terms in it. When you ask your calculator to
calculate a function like sin or ex, it’s using a polynomial approxima-
tion with 10 or 12 terms. Physically, a spring with a positive value
of b gets stiffer when stretched strongly than an “ideal” spring with
b = 0. A spring with a negative b is like a person who cracks under
stress — when you stretch it too much, it becomes more elastic than
an ideal spring would. We should not expect any spring to give to-
tally ideal behavior no matter no matter how much it is stretched.
For example, there has to be some point at which it breaks.

Do a numerical simulation of the oscillation of a mass on a spring
whose force has a nonvanishing b. Is the period still independent of
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amplitude? Is the amplitude-independent equation for the period
still approximately valid for small enough amplitudes? Does the
addition of an x3 term with b > 0 tend to increase the period, or
decrease it? Include a printout of your program and its output with
your homework paper.

17 An idealized pendulum consists of a pointlike mass m on the
end of a massless, rigid rod of length L. Its amplitude, θ, is the angle
the rod makes with the vertical when the pendulum is at the end
of its swing. Write a numerical simulation to determine the period
of the pendulum for any combination of m, L, and θ. Examine the
effect of changing each variable while manipulating the others. ?
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Exercise 16: Vibrations
Equipment:

• air track and carts of two different masses

• springs

• spring scales

Place the cart on the air track and attach springs so that it can vibrate.

1. Test whether the period of vibration depends on amplitude. Try at least one moderate
amplitude, for which the springs do not go slack, at least one amplitude that is large enough so
that they do go slack, and one amplitude that’s the very smallest you can possibly observe.

2. Try a cart with a different mass. Does the period change by the expected factor, based on
the equation ω =

√
k/m?

3. Use a spring scale to pull the cart away from equilibrium, and make a graph of force versus
position. Is it linear? If so, what is its slope?

4. Test the equation ω =
√
k/m numerically.

478 Chapter 16 Vibrations



Top: A series of images from
a film of the Tacoma Narrows
Bridge vibrating on the day it was
to collapse. Middle: The bridge
immediately before the collapse,
with the sides vibrating 8.5 me-
ters (28 feet) up and down. Note
that the bridge is over a mile long.
Bottom: During and after the fi-
nal collapse. The right-hand pic-
ture gives a sense of the massive
scale of the construction.

Chapter 17

Resonance

Soon after the mile-long Tacoma Narrows Bridge opened in July
1940, motorists began to notice its tendency to vibrate frighteningly
in even a moderate wind. Nicknamed “Galloping Gertie,” the bridge
collapsed in a steady 42-mile-per-hour wind on November 7 of the
same year. The following is an eyewitness report from a newspaper
editor who found himself on the bridge as the vibrations approached
the breaking point.

“Just as I drove past the towers, the bridge began to sway vi-
olently from side to side. Before I realized it, the tilt became so
violent that I lost control of the car... I jammed on the brakes and
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got out, only to be thrown onto my face against the curb.

“Around me I could hear concrete cracking. I started to get my
dog Tubby, but was thrown again before I could reach the car. The
car itself began to slide from side to side of the roadway.

“On hands and knees most of the time, I crawled 500 yards or
more to the towers... My breath was coming in gasps; my knees
were raw and bleeding, my hands bruised and swollen from gripping
the concrete curb... Toward the last, I risked rising to my feet and
running a few yards at a time... Safely back at the toll plaza, I
saw the bridge in its final collapse and saw my car plunge into the
Narrows.”

The ruins of the bridge formed an artificial reef, one of the
world’s largest. It was not replaced for ten years. The reason for
its collapse was not substandard materials or construction, nor was
the bridge under-designed: the piers were hundred-foot blocks of
concrete, the girders massive and made of carbon steel. The bridge
was destroyed because of the physical phenomenon of resonance,
the same effect that allows an opera singer to break a wine glass
with her voice and that lets you tune in the radio station you want.
The replacement bridge, which has lasted half a century so far, was
built smarter, not stronger. The engineers learned their lesson and
simply included some slight modifications to avoid the resonance
phenomenon that spelled the doom of the first one.

17.1 Energy in vibrations
One way of describing the collapse of the bridge is that the bridge
kept taking energy from the steadily blowing wind and building up
more and more energetic vibrations. In this section, we discuss the
energy contained in a vibration, and in the subsequent sections we
will move on to the loss of energy and the adding of energy to a
vibrating system, all with the goal of understanding the important
phenomenon of resonance.

Going back to our standard example of a mass on a spring, we
find that there are two forms of energy involved: the potential energy
stored in the spring and the kinetic energy of the moving mass. We
may start the system in motion either by hitting the mass to put in
kinetic energy by pulling it to one side to put in potential energy.
Either way, the subsequent behavior of the system is identical. It
trades energy back and forth between kinetic and potential energy.
(We are still assuming there is no friction, so that no energy is
converted to heat, and the system never runs down.)

The most important thing to understand about the energy con-
tent of vibrations is that the total energy is proportional to the
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a / Example 1.

square of the amplitude. Although the total energy is constant, it
is instructive to consider two specific moments in the motion of the
mass on a spring as examples. When the mass is all the way to
one side, at rest and ready to reverse directions, all its energy is
potential. We have already seen that the potential energy stored
in a spring equals (1/2)kx2, so the energy is proportional to the
square of the amplitude. Now consider the moment when the mass
is passing through the equilibrium point at x = 0. At this point it
has no potential energy, but it does have kinetic energy. The veloc-
ity is proportional to the amplitude of the motion, and the kinetic
energy, (1/2)mv2, is proportional to the square of the velocity, so
again we find that the energy is proportional to the square of the
amplitude. The reason for singling out these two points is merely
instructive; proving that energy is proportional to A2 at any point
would suffice to prove that energy is proportional to A2 in general,
since the energy is constant.

Are these conclusions restricted to the mass-on-a-spring exam-
ple? No. We have already seen that F = −kx is a valid approxima-
tion for any vibrating object, as long as the amplitude is small. We
are thus left with a very general conclusion: the energy of any vibra-
tion is approximately proportional to the square of the amplitude,
provided that the amplitude is small.

Water in a U-tube example 1
If water is poured into a U-shaped tube as shown in the figure, it
can undergo vibrations about equilibrium. The energy of such a
vibration is most easily calculated by considering the “turnaround
point” when the water has stopped and is about to reverse direc-
tions. At this point, it has only potential energy and no kinetic
energy, so by calculating its potential energy we can find the en-
ergy of the vibration. This potential energy is the same as the
work that would have to be done to take the water out of the right-
hand side down to a depth A below the equilibrium level, raise it
through a height A, and place it in the left-hand side. The weight
of this chunk of water is proportional to A, and so is the height
through which it must be lifted, so the energy is proportional to
A2.

The range of energies of sound waves example 2
. The amplitude of vibration of your eardrum at the threshold of
pain is about 106 times greater than the amplitude with which
it vibrates in response to the softest sound you can hear. How
many times greater is the energy with which your ear has to cope
for the painfully loud sound, compared to the soft sound?

. The amplitude is 106 times greater, and energy is proportional
to the square of the amplitude, so the energy is greater by a factor
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of 1012 . This is a phenomenally large factor!

We are only studying vibrations right now, not waves, so we are
not yet concerned with how a sound wave works, or how the energy
gets to us through the air. Note that because of the huge range of
energies that our ear can sense, it would not be reasonable to have
a sense of loudness that was additive. Consider, for instance, the
following three levels of sound:

barely audible wind
quiet conversation . . . . 105 times more energy than the

wind
heavy metal concert . . 1012 times more energy than the

wind

In terms of addition and subtraction, the difference between the
wind and the quiet conversation is nothing compared to the differ-
ence between the quiet conversation and the heavy metal concert.
Evolution wanted our sense of hearing to be able to encompass all
these sounds without collapsing the bottom of the scale so that any-
thing softer than the crack of doom would sound the same. So rather
than making our sense of loudness additive, mother nature made it
multiplicative. We sense the difference between the wind and the
quiet conversation as spanning a range of about 5/12 as much as the
whole range from the wind to the heavy metal concert. Although
a detailed discussion of the decibel scale is not relevant here, the
basic point to note about the decibel scale is that it is logarithmic.
The zero of the decibel scale is close to the lower limit of human
hearing, and adding 1 unit to the decibel measurement corresponds
to multiplying the energy level (or actually the power per unit area)
by a certain factor.

17.2 Energy lost from vibrations
Numerical treatment

An oscillator that has friction is referred to as damped. Let’s
use numerical techniques to find the motion of a damped oscillator
that is released away from equilibrium, but experiences no driving
force after that. We can expect that the motion will consist of
oscillations that gradually die out. Newton’s second law, a = F/m,
gives a = (−kx− bv)/m. This becomes a little prettier if we rewrite
it in the form

ma+ bv + kx = 0 ,

which gives symmetric treatment to three terms involving x and its
first and second derivatives, v and a.

1 import math

2 k=39.4784 # chosen to give a period of 1 second

3 m=1.

482 Chapter 17 Resonance



4 b=0.211 # chosen to make the results simple

5 x=1.

6 v=0.

7 t=0.

8 dt=.01

9 n=1000

10 for j in range(n):

11 x=x+v*dt

12 a=(-k*x-b*v)/m

13 if (v>0) and (v+a*dt<0) :

14 print("turnaround at t=",t,", x=",x)

15 v=v+a*dt

16 t=t+dt

turnaround at t= 0.99 , x= 0.899919262445

turnaround at t= 1.99 , x= 0.809844934046

turnaround at t= 2.99 , x= 0.728777519477

turnaround at t= 3.99 , x= 0.655817260033

turnaround at t= 4.99 , x= 0.590154191135

turnaround at t= 5.99 , x= 0.531059189965

turnaround at t= 6.99 , x= 0.477875914756

turnaround at t= 7.99 , x= 0.430013546991

turnaround at t= 8.99 , x= 0.386940256644

turnaround at t= 9.99 , x= 0.348177318484

The spring constant, k = 4π = 39.4784 N/m, is designed so
that if the undamped equation f = (1/2π)

√
k/m was still true, the

frequency would be 1 Hz. We start by noting that the addition of a
small amount of damping doesn’t seem to have changed the period
at all, or at least not to within the accuracy of the calculation. You
can check for yourself, however, that a large value of b, say 5 N·s/m,
does change the period significantly.

We release the mass from x = 1 m, and after one cycle, it only
comes back to about x = 0.9 m. I chose b = 0.211 N·s/m by fiddling
around until I got this result, since a decrease of exactly 10% is
easy to discuss. Notice how the amplitude after two cycles is about
0.81 m, i.e., 1 m times 0.92: the amplitude has again dropped by
exactly 10%. This pattern continues for as long as the simulation
runs, e.g., for the last two cycles, we have 0.34818/0.38694=0.89982,
or almost exactly 0.9 again. It might have seemed capricious when I
chose to use the unrealistic equation F = −bv, but this is the payoff.
Only with −bv friction do we get this kind of mathematically simple
exponential decay.

Analytic treatment

Taking advantage of this unexpectedly simple result, let’s find
an analytic solution for the motion. The numerical output suggests
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b / A damped sine wave, of
the form x = Ae−ctsin(ωf t + δ).

c / Self-check A.

d / A damped sine wave is
compared with an undamped
one, with m and k kept the same
and only b changed.

that we assume a solution of the form

x = Ae−ct sin(ωf t+ δ) ,

where the unknown constants ωf and c will presumably be related to
m, b, and k. The constant c indicates how quickly the oscillations die
out. The constant ωf is, as before, defined as 2π times the frequency,
with the subscript f to indicate a free (undriven) solution. All
our equations will come out much simpler if we use ωs everywhere
instead of fs from now on, and, as physicists often do, I’ll generally
use the word “frequency” to refer to ω when the context makes it
clear what I’m talking about. The phase angle δ has no real physical
significance, since we can define t = 0 to be any moment in time we
like.

self-check A
In figure c, which graph has the greater value of c? . Answer, p. 527

The factor A for the initial amplitude can also be omitted with-
out loss of generality, since the equation we’re trying to solve, ma+
bv + kx = 0, is linear. That is, v and a are the first and second
derivatives of x, and the derivative of Ax is simply A times the
derivative of x. Thus, if x(t) is a solution of the equation, then
multiplying it by a constant gives an equally valid solution. This is
another place where we see that a damping force proportional to v is
the easiest to handle mathematically. For a damping force propor-
tional to v2, for example, we would have had to solve the equation
ma+ bv2 + kx = 0, which is nonlinear.

For the purpose of determining ωf and c, the most general form
we need to consider is therefore x = e−ct sinωf t , whose first and
second derivatives are v = e−ct (−c sinωf t+ ω cosωf t) and a =

e−ct
(
c2 sinωf t− 2ωfc cosωf t− ω2

f sinωf t
)

. Plugging these into the

equation ma + bv + kx = 0 and setting the sine and cosine parts
equal to zero gives, after some tedious algebra,

c =
b

2m

and

ωf =

√
k

m
− b2

4m2
.

Intuitively, we expect friction to “slow down” the motion, as when
we ride a bike into a big patch of mud. “Slow down,” however, could
have more than one meaning here. It could mean that the oscillator
would take more time to complete each cycle, or it could mean that
as time went on, the oscillations would die out, thus giving smaller
velocities.

Our mathematical results show that both of these things hap-
pen. The first equation says that c, which indicates how quickly the
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e / 1. Pushing a child on a
swing gradually puts more and
more energy into her vibrations.
2. A fairly realistic graph of the
driving force acting on the child.
3. A less realistic, but more
mathematically simple, driving
force.

f / The amplitude approaches
a maximum.

oscillations damp out, is directly related to b, the strength of the
damping.

The second equation, for the frequency, can be compared with
the result from page 465 of

√
k/m for the undamped system. Let’s

refer to this now as ωo, to distinguish it from the actual frequency
ωf of the free oscillations when damping is present. The result for
ωf will be less than ωo, due to the presence of the b2/4m2 term. This
tells us that the addition of friction to the system does increase the
time required for each cycle. However, it is very common for the
b2/4m2 term to be negligible, so that ωf ≈ ωo.

Figure d shows an example. The damping here is quite strong:
after only one cycle of oscillation, the amplitude has already been
reduced by a factor of 2, corresponding to a factor of 4 in energy.
However, the frequency of the damped oscillator is only about 1%
lower than that of the undamped one; after five periods, the ac-
cumulated lag is just barely visible in the offsetting of the arrows.
We can see that extremely strong damping — even stronger than
this — would have been necessary in order to make ωf ≈ ωo a poor
approximation.

17.3 Putting energy into vibrations

When pushing a child on a swing, you cannot just apply a con-
stant force. A constant force will move the swing out to a certain
angle, but will not allow the swing to start swinging. Nor can you
give short pushes at randomly chosen times. That type of ran-
dom pushing would increase the child’s kinetic energy whenever you
happened to be pushing in the same direction as her motion, but it
would reduce her energy when your pushing happened to be in the
opposite direction compared to her motion. To make her build up
her energy, you need to make your pushes rhythmic, pushing at the
same point in each cycle. In other words, your force needs to form a
repeating pattern with the same frequency as the normal frequency
of vibration of the swing. Graph e/1 shows what the child’s x − t
graph would look like as you gradually put more and more energy
into her vibrations. A graph of your force versus time would prob-
ably look something like graph 2. It turns out, however, that it is
much simpler mathematically to consider a vibration with energy
being pumped into it by a driving force that is itself a sine-wave, 3.
A good example of this is your eardrum being driven by the force
of a sound wave.

Now we know realistically that the child on the swing will not
keep increasing her energy forever, nor does your eardrum end up
exploding because a continuing sound wave keeps pumping more and
more energy into it. In any realistic system, there is energy going
out as well as in. As the vibrations increase in amplitude, there is an
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increase in the amount of energy taken away by damping with each
cycle. This occurs for two reasons. Work equals force times distance
(or, more accurately, the area under the force-distance curve). As
the amplitude of the vibrations increases, the damping force is being
applied over a longer distance. Furthermore, the damping force
usually increases with velocity (we usually assume for simplicity
that it is proportional to velocity), and this also serves to increase
the rate at which damping forces remove energy as the amplitude
increases. Eventually (and small children and our eardrums are
thankful for this!), the amplitude approaches a maximum value, f,
at which energy is removed by the damping force just as quickly as
it is being put in by the driving force.

This process of approaching a maximum amplitude happens ex-
tremely quickly in many cases, e.g., the ear or a radio receiver, and
we don’t even notice that it took a millisecond or a microsecond
for the vibrations to “build up steam.” We are therefore mainly
interested in predicting the behavior of the system once it has had
enough time to reach essentially its maximum amplitude. This is
known as the steady-state behavior of a vibrating system.

Now comes the interesting part: what happens if the frequency
of the driving force is mismatched to the frequency at which the
system would naturally vibrate on its own? We all know that a
radio station doesn’t have to be tuned in exactly, although there is
only a small range over which a given station can be received. The
designers of the radio had to make the range fairly small to make
it possible eliminate unwanted stations that happened to be nearby
in frequency, but it couldn’t be too small or you wouldn’t be able
to adjust the knob accurately enough. (Even a digital radio can
be tuned to 88.0 MHz and still bring in a station at 88.1 MHz.)
The ear also has some natural frequency of vibration, but in this
case the range of frequencies to which it can respond is quite broad.
Evolution has made the ear’s frequency response as broad as pos-
sible because it was to our ancestors’ advantage to be able to hear
everything from a low roars to a high-pitched shriek.

The remainder of this section develops four important facts about
the response of a system to a driving force whose frequency is not
necessarily the same as the system’s natural frequency of vibration.
The style is approximate and intuitive, but proofs are given in sec-
tion 17.4.

First, although we know the ear has a frequency — about 4000
Hz — at which it would vibrate naturally, it does not vibrate at
4000 Hz in response to a low-pitched 200 Hz tone. It always re-
sponds at the frequency at which it is driven. Otherwise all pitches
would sound like 4000 Hz to us. This is a general fact about driven
vibrations:
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g / The collapsed section of
the Nimitz Freeway.

(1) The steady-state response to a sinusoidal driving force oc-
curs at the frequency of the force, not at the system’s own natural
frequency of vibration.

Now let’s think about the amplitude of the steady-state response.
Imagine that a child on a swing has a natural frequency of vibration
of 1 Hz, but we are going to try to make her swing back and forth at
3 Hz. We intuitively realize that quite a large force would be needed
to achieve an amplitude of even 30 cm, i.e., the amplitude is less in
proportion to the force. When we push at the natural frequency of
1 Hz, we are essentially just pumping energy back into the system
to compensate for the loss of energy due to the damping (friction)
force. At 3 Hz, however, we are not just counteracting friction. We
are also providing an extra force to make the child’s momentum
reverse itself more rapidly than it would if gravity and the tension
in the chain were the only forces acting. It is as if we are artificially
increasing the k of the swing, but this is wasted effort because we
spend just as much time decelerating the child (taking energy out
of the system) as accelerating her (putting energy in).

Now imagine the case in which we drive the child at a very
low frequency, say 0.02 Hz or about one vibration per minute. We
are essentially just holding the child in position while very slowly
walking back and forth. Again we intuitively recognize that the
amplitude will be very small in proportion to our driving force.
Imagine how hard it would be to hold the child at our own head-
level when she is at the end of her swing! As in the too-fast 3 Hz
case, we are spending most of our effort in artificially changing the
k of the swing, but now rather than reinforcing the gravity and
tension forces we are working against them, effectively reducing k.
Only a very small part of our force goes into counteracting friction,
and the rest is used in repetitively putting potential energy in on
the upswing and taking it back out on the downswing, without any
long-term gain.

We can now generalize to make the following statement, which
is true for all driven vibrations:

(2) A vibrating system resonates at its own natural frequency.1

That is, the amplitude of the steady-state response is greatest in
proportion to the amount of driving force when the driving force
matches the natural frequency of vibration.

An opera singer breaking a wine glass example 3
In order to break a wineglass by singing, an opera singer must
first tap the glass to find its natural frequency of vibration, and
then sing the same note back.
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Collapse of the Nimitz Freeway in an earthquake example 4
I led off the chapter with the dramatic collapse of the Tacoma
Narrows Bridge, mainly because a it was well documented by a
local physics professor, and an unknown person made a movie
of the collapse. The collapse of a section of the Nimitz Freeway
in Oakland, CA, during a 1989 earthquake is however a simpler
example to analyze.

An earthquake consists of many low-frequency vibrations that oc-
cur simultaneously, which is why it sounds like a rumble of inde-
terminate pitch rather than a low hum. The frequencies that we
can hear are not even the strongest ones; most of the energy is
in the form of vibrations in the range of frequencies from about 1
Hz to 10 Hz.

Now all the structures we build are resting on geological layers
of dirt, mud, sand, or rock. When an earthquake wave comes
along, the topmost layer acts like a system with a certain natural
frequency of vibration, sort of like a cube of jello on a plate being
shaken from side to side. The resonant frequency of the layer
depends on how stiff it is and also on how deep it is. The ill-
fated section of the Nimitz freeway was built on a layer of mud,
and analysis by geologist Susan E. Hough of the U.S. Geological
Survey shows that the mud layer’s resonance was centered on
about 2.5 Hz, and had a width covering a range from about 1 Hz
to 4 Hz.

When the earthquake wave came along with its mixture of fre-
quencies, the mud responded strongly to those that were close to
its own natural 2.5 Hz frequency. Unfortunately, an engineering
analysis after the quake showed that the overpass itself had a res-
onant frequency of 2.5 Hz as well! The mud responded strongly to
the earthquake waves with frequencies close to 2.5 Hz, and the
bridge responded strongly to the 2.5 Hz vibrations of the mud,
causing sections of it to collapse.

Collapse of the Tacoma Narrows Bridge example 5
Let’s now examine the more conceptually difficult case of the
Tacoma Narrows Bridge. The surprise here is that the wind was
steady. If the wind was blowing at constant velocity, why did it
shake the bridge back and forth? The answer is a little compli-
cated. Based on film footage and after-the-fact wind tunnel exper-
iments, it appears that two different mechanisms were involved.

The first mechanism was the one responsible for the initial, rel-
atively weak vibrations, and it involved resonance. As the wind
moved over the bridge, it began acting like a kite or an airplane
wing. As shown in the figure, it established swirling patterns of air
flow around itself, of the kind that you can see in a moving cloud
of smoke. As one of these swirls moved off of the bridge, there
was an abrupt change in air pressure, which resulted in an up or
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down force on the bridge. We see something similar when a flag
flaps in the wind, except that the flag’s surface is usually verti-
cal. This back-and-forth sequence of forces is exactly the kind of
periodic driving force that would excite a resonance. The faster
the wind, the more quickly the swirls would get across the bridge,
and the higher the frequency of the driving force would be. At just
the right velocity, the frequency would be the right one to excite
the resonance. The wind-tunnel models, however, show that the
pattern of vibration of the bridge excited by this mechanism would
have been a different one than the one that finally destroyed the
bridge.

The bridge was probably destroyed by a different mechanism, in
which its vibrations at its own natural frequency of 0.2 Hz set up
an alternating pattern of wind gusts in the air immediately around
it, which then increased the amplitude of the bridge’s vibrations.
This vicious cycle fed upon itself, increasing the amplitude of the
vibrations until the bridge finally collapsed.

As long as we’re on the subject of collapsing bridges, it is worth
bringing up the reports of bridges falling down when soldiers march-
ing over them happened to step in rhythm with the bridge’s natural
frequency of oscillation. This is supposed to have happened in 1831
in Manchester, England, and again in 1849 in Anjou, France. Many
modern engineers and scientists, however, are suspicious of the anal-
ysis of these reports. It is possible that the collapses had more to do
with poor construction and overloading than with resonance. The
Nimitz Freeway and Tacoma Narrows Bridge are far better docu-
mented, and occurred in an era when engineers’ abilities to analyze
the vibrations of a complex structure were much more advanced.

Emission and absorption of light waves by atoms example 6
In a very thin gas, the atoms are sufficiently far apart that they can
act as individual vibrating systems. Although the vibrations are of
a very strange and abstract type described by the theory of quan-
tum mechanics, they nevertheless obey the same basic rules as
ordinary mechanical vibrations. When a thin gas made of a cer-
tain element is heated, it emits light waves with certain specific
frequencies, which are like a fingerprint of that element. As with
all other vibrations, these atomic vibrations respond most strongly
to a driving force that matches their own natural frequency. Thus
if we have a relatively cold gas with light waves of various fre-
quencies passing through it, the gas will absorb light at precisely
those frequencies at which it would emit light if heated.

(3) When a system is driven at resonance, the steady-state vi-
brations have an amplitude that is proportional to Q.

This is fairly intuitive. The steady-state behavior is an equilib-
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h / The definition of the full
width at half maximum.

rium between energy input from the driving force and energy loss
due to damping. A low-Q oscillator, i.e., one with strong damping,
dumps its energy faster, resulting in lower-amplitude steady-state
motion.

self-check B
If an opera singer is shopping for a wine glass that she can impress her
friends by breaking, what should she look for? . Answer, p. 527

Piano strings ringing in sympathy with a sung note example 7
. A sufficiently loud musical note sung near a piano with the lid
raised can cause the corresponding strings in the piano to vibrate.
(A piano has a set of three strings for each note, all struck by the
same hammer.) Why would this trick be unlikely to work with a
violin?

. If you have heard the sound of a violin being plucked (the pizzi-
cato effect), you know that the note dies away very quickly. In
other words, a violin’s Q is much lower than a piano’s. This means
that its resonances are much weaker in amplitude.

Our fourth and final fact about resonance is perhaps the most
surprising. It gives us a way to determine numerically how wide
a range of driving frequencies will produce a strong response. As
shown in the graph, resonances do not suddenly fall off to zero out-
side a certain frequency range. It is usual to describe the width of a
resonance by its full width at half-maximum (FWHM) as illustrated
in figure h.

(4) The FWHM of a resonance is related to its Q and its resonant
frequency fres by the equation

FWHM =
fres
Q

.

(This equation is only a good approximation when Q is large.)

Why? It is not immediately obvious that there should be any
logical relationship between Q and the FWHM. Here’s the idea. As
we have seen already, the reason why the response of an oscillator
is smaller away from resonance is that much of the driving force is
being used to make the system act as if it had a different k. Roughly
speaking, the half-maximum points on the graph correspond to the
places where the amount of the driving force being wasted in this
way is the same as the amount of driving force being used pro-
ductively to replace the energy being dumped out by the damping
force. If the damping force is strong, then a large amount of force
is needed to counteract it, and we can waste quite a bit of driving
force on changing k before it becomes comparable to the damping
force. If, on the other hand, the damping force is weak, then even a
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small amount of force being wasted on changing k will become sig-
nificant in proportion, and we cannot get very far from the resonant
frequency before the two are comparable.

The response is in general out of phase with the driving force by
an angle δ.

i / Dependence of the amplitude
and phase angle on the driving
frequency. The undamped case
is Q = ∞, and the other curves
represent Q=1, 3, and 10. Fm, m,
and ωo are all set to 1.

Changing the pitch of a wind instrument example 8
. A saxophone player normally selects which note to play by
choosing a certain fingering, which gives the saxophone a cer-
tain resonant frequency. The musician can also, however, change
the pitch significantly by altering the tightness of her lips. This
corresponds to driving the horn slightly off of resonance. If the
pitch can be altered by about 5% up or down (about one musi-
cal half-step) without too much effort, roughly what is the Q of a
saxophone?
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j / Example 12. 1. A com-
pass needle vibrates about the
equilibrium position under the
influence of the earth’s magnetic
forces. 2. The orientation of a
proton’s spin vibrates around its
equilibrium direction under the
influence of the magnetic forces
coming from the surrounding
electrons and nuclei.

k / A member of the author’s
family, who turned out to be
healthy.

l / A three-dimensional com-
puter reconstruction of the shape
of a human brain, based on
magnetic resonance data.

. Five percent is the width on one side of the resonance, so the
full width is about 10%, FWHM / fres = 0.1. This implies a Q
of about 10, i.e., once the musician stops blowing, the horn will
continue sounding for about 10 cycles before its energy falls off by
a factor of 535. (Blues and jazz saxophone players will typically
choose a mouthpiece that has a low Q, so that they can produce
the bluesy pitch-slides typical of their style. “Legit,” i.e., classically
oriented players, use a higher-Q setup because their style only
calls for enough pitch variation to produce a vibrato.)

Decay of a saxophone tone example 9
. If a typical saxophone setup has a Q of about 10, how long will
it take for a 100-Hz tone played on a baritone saxophone to die
down by a factor of 535 in energy, after the player suddenly stops
blowing?

. A Q of 10 means that it takes 10 cycles for the vibrations to die
down in energy by a factor of 535. Ten cycles at a frequency of
100 Hz would correspond to a time of 0.1 seconds, which is not
very long. This is why a saxophone note doesn’t “ring” like a note
played on a piano or an electric guitar.

Q of a radio receiver example 10
. A radio receiver used in the FM band needs to be tuned in to
within about 0.1 MHz for signals at about 100 MHz. What is its
Q?

. Q = fres/FWHM = 1000. This is an extremely high Q compared
to most mechanical systems.

Q of a stereo speaker example 11
We have already given one reason why a stereo speaker should
have a low Q: otherwise it would continue ringing after the end of
the musical note on the recording. The second reason is that we
want it to be able to respond to a large range of frequencies.

Nuclear magnetic resonance example 12
If you have ever played with a magnetic compass, you have un-
doubtedly noticed that if you shake it, it takes some time to settle
down, j/1. As it settles down, it acts like a damped oscillator of the
type we have been discussing. The compass needle is simply a
small magnet, and the planet earth is a big magnet. The magnetic
forces between them tend to bring the needle to an equilibrium
position in which it lines up with the planet-earth-magnet.

Essentially the same physics lies behind the technique called Nu-
clear Magnetic Resonance (NMR). NMR is a technique used to
deduce the molecular structure of unknown chemical substances,
and it is also used for making medical images of the inside of peo-
ple’s bodies. If you ever have an NMR scan, they will actually tell
you you are undergoing “magnetic resonance imaging” or “MRI,”
because people are scared of the word “nuclear.” In fact, the
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nuclei being referred to are simply the non-radioactive nuclei of
atoms found naturally in your body.

Here’s how NMR works. Your body contains large numbers of
hydrogen atoms, each consisting of a small, lightweight electron
orbiting around a large, heavy proton. That is, the nucleus of a
hydrogen atom is just one proton. A proton is always spinning
on its own axis, and the combination of its spin and its electrical
charge cause it to behave like a tiny magnet. The principle iden-
tical to that of an electromagnet, which consists of a coil of wire
through which electrical charges pass; the circling motion of the
charges in the coil of wire makes it magnetic, and in the same
way, the circling motion of the proton’s charge makes it magnetic.

Now a proton in one of your body’s hydrogen atoms finds itself
surrounded by many other whirling, electrically charged particles:
its own electron, plus the electrons and nuclei of the other nearby
atoms. These neighbors act like magnets, and exert magnetic
forces on the proton, j/2. The k of the vibrating proton is simply a
measure of the total strength of these magnetic forces. Depend-
ing on the structure of the molecule in which the hydrogen atom
finds itself, there will be a particular set of magnetic forces acting
on the proton and a particular value of k . The NMR apparatus
bombards the sample with radio waves, and if the frequency of
the radio waves matches the resonant frequency of the proton,
the proton will absorb radio-wave energy strongly and oscillate
wildly. Its vibrations are damped not by friction, because there is
no friction inside an atom, but by the reemission of radio waves.

By working backward through this chain of reasoning, one can de-
termine the geometric arrangement of the hydrogen atom’s neigh-
boring atoms. It is also possible to locate atoms in space, allowing
medical images to be made.

Finally, it should be noted that the behavior of the proton cannot
be described entirely correctly by Newtonian physics. Its vibra-
tions are of the strange and spooky kind described by the laws of
quantum mechanics. It is impressive, however, that the few sim-
ple ideas we have learned about resonance can still be applied
successfully to describe many aspects of this exotic system.

Discussion question

A Nikola Tesla, one of the inventors of radio and an archetypical mad
scientist, told a credulous reporter in 1912 the following story about an
application of resonance. He built an electric vibrator that fit in his pocket,
and attached it to one of the steel beams of a building that was under
construction in New York. Although the article in which he was quoted
didn’t say so, he presumably claimed to have tuned it to the resonant fre-
quency of the building. “In a few minutes, I could feel the beam trembling.
Gradually the trembling increased in intensity and extended throughout
the whole great mass of steel. Finally, the structure began to creak and
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weave, and the steelworkers came to the ground panic-stricken, believ-
ing that there had been an earthquake. ... [If] I had kept on ten minutes
more, I could have laid that building flat in the street.” Is this physically
plausible?

17.4 ? Proofs
Our first goal is to predict the amplitude of the steady-state vibra-
tions as a function of the frequency of the driving force and the
amplitude of the driving force. With that equation in hand, we will
then prove statements 2, 3, and 4 from section 17.3.

We have an external driving force F = Fm sinωt, where the
constant Fm indicates the maximum strength of the force in either
direction. The equation of motion is

[1] ma+ bv + kx = Fm sinωt .

For the steady-state motion, we’re going to look for a solution of
the form

x = A sin(ωt+ δ) .

The left-hand side of the equation of motion will clearly be a sinu-
soidal function with frequency ω, so it can only equal the right-hand
side if, as we have already implicitly assumed, the frequency of the
motion matches the frequency of the driving force. This proves
statement (1).

In contrast to the undriven case, here it’s not possible to sweep
A and δ under the rug. The amplitude of the steady-state motion,
A, is actually the most interesting thing to know about the steady-
state motion, and it’s not true that we still have a solution no matter
how we fiddle with A; if we have a solution for a certain value of
A, then multiplying A by some constant would break the equality
between the two sides of the equation of motion. It’s also no longer
true that we can get rid of δ simply be redefining when we start the
clock; here δ represents a difference in time between the start of one
cycle of the driving force and the start of the corresponding cycle of
the motion.

The velocity and acceleration are v = ωA cos(ωt + δ) and a =
−ω2A sin(ωt+ δ), and if we plug these into the equation of motion,
[1], and simplify a little, we find

[2] (k −mω2) sin(ωt+ δ) + ωb cos(ωt+ δ) =
Fm
A

sinωt .

The sum of any two sinusoidal functions with the same frequency
is also a sinusoidal, so the whole left side adds up to a sinusoidal.
By fiddling with A and δ we can make the amplitudes and phases
of the two sides of the equation match up.
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Using the trig identities for the sine of a sum and cosine of a
sum, we can change equation [2] into the form[

(−mω2 + k) cos δ − bω sin δ − Fm/A
]

sinωt

+
[
(−mω2 + k) sin δ + bω cos δ

]
cosωt = 0 .

Both the quantities in square brackets must equal zero, which gives
us two equations we can use to determine the unknowns A and δ.
The results are

[3] δ = tan−1 ωωo

Q(ω2
o − ω2)

and

[4] A =
Fm

m

√
(ω2 − ω2

o)2 + ω2
oω

2Q−2

.

Statement 2: maximum amplitude at resonance

Equation [4] makes it plausible that the amplitude is maximized
when the system is driven at close to its resonant frequency. At
f = fo, the first term inside the square root vanishes, and this
makes the denominator as small as possible, causing the amplitude
to be as big as possible. (Actually this is only approximately true,
because it is possible to make A a little bigger by decreasing f a little
below fo, which makes the second term smaller. This technical issue
is addressed in homework problem 3 on page 499.)

Statement 3: amplitude at resonance proportional to Q

Equation [4] shows that the amplitude at resonance is propor-
tional to 1/b, and the Q of the system is inversely proportional to
b, so the amplitude at resonance is proportional to Q.

Statement 4: FWHM related to Q

We will satisfy ourselves by proving only the proportionality
FWHM ∝ fo/Q, not the actual equation FWHM = fo/Q. The
energy is proportional to A2, i.e., to the inverse of the quantity
inside the square root in equation [4]. At resonance, the first term
inside the square root vanishes, and the half-maximum points occur
at frequencies for which the whole quantity inside the square root
is double its value at resonance, i.e., when the two terms are equal.
At the half-maximum points, we have

f2 − f2
o =

(
fo ±

FWHM

2

)2

− f2
o

= ±fo · FWHM +
1

4
FWHM2
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If we assume that the width of the resonance is small compared to
the resonant frequency, then the FWHM2 term is negligible com-
pared to the fo · FWHM term, and setting the terms in equation 4
equal to each other gives

4π2m2 (foFWHM)2 = b2f2 .

We are assuming that the width of the resonance is small compared
to the resonant frequency, so f and fo can be taken as synonyms.
Thus,

FWHM =
b

2πm
.

We wish to connect this to Q, which can be interpreted as the en-
ergy of the free (undriven) vibrations divided by the work done by
damping in one cycle. The former equals kA2/2, and the latter is
proportional to the force, bv ∝ bAfo, multiplied by the distance
traveled, A. (This is only a proportionality, not an equation, since
the force is not constant.) We therefore find that Q is proportional
to k/bfo. The equation for the FWHM can then be restated as a
proportionality FWHM ∝ k/Qfom ∝ fo/Q.
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Summary
Selected vocabulary
damping . . . . . the dissipation of a vibration’s energy into

heat energy, or the frictional force that causes
the loss of energy

quality factor . . the number of oscillations required for a sys-
tem’s energy to fall off by a factor of 535 due
to damping

driving force . . . an external force that pumps energy into a vi-
brating system

resonance . . . . the tendency of a vibrating system to respond
most strongly to a driving force whose fre-
quency is close to its own natural frequency
of vibration

steady state . . . the behavior of a vibrating system after it has
had plenty of time to settle into a steady re-
sponse to a driving force

Notation
Q . . . . . . . . . the quality factor
fo . . . . . . . . . the natural (resonant) frequency of a vibrating

system, i.e., the frequency at which it would
vibrate if it was simply kicked and left alone

f . . . . . . . . . . the frequency at which the system actually vi-
brates, which in the case of a driven system is
equal to the frequency of the driving force, not
the natural frequency

Summary

The energy of a vibration is always proportional to the square of
the amplitude, assuming the amplitude is small. Energy is lost from
a vibrating system for various reasons such as the conversion to heat
via friction or the emission of sound. This effect, called damping,
will cause the vibrations to decay exponentially unless energy is
pumped into the system to replace the loss. A driving force that
pumps energy into the system may drive the system at its own
natural frequency or at some other frequency. When a vibrating
system is driven by an external force, we are usually interested in
its steady-state behavior, i.e., its behavior after it has had time to
settle into a steady response to a driving force. In the steady state,
the same amount of energy is pumped into the system during each
cycle as is lost to damping during the same period.

The following are four important facts about a vibrating system
being driven by an external force:

(1) The steady-state response to a sinusoidal driving force oc-
curs at the frequency of the force, not at the system’s own natural
frequency of vibration.
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(2) A vibrating system resonates at its own natural frequency.
That is, the amplitude of the steady-state response is greatest in
proportion to the amount of driving force when the driving force
matches the natural frequency of vibration.

(3) When a system is driven at resonance, the steady-state vi-
brations have an amplitude that is proportional to Q.

(4) The FWHM of a resonance is related to its Q and its resonant
frequency fo by the equation

FWHM =
fo

Q
.

(This equation is only a good approximation when Q is large.)
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 If one stereo system is capable of producing 20 watts of sound
power and another can put out 50 watts, how many times greater
is the amplitude of the sound wave that can be created by the more
powerful system? (Assume they are playing the same music.)

2 Many fish have an organ known as a swim bladder, an air-filled
cavity whose main purpose is to control the fish’s buoyancy an allow
it to keep from rising or sinking without having to use its muscles.
In some fish, however, the swim bladder (or a small extension of it)
is linked to the ear and serves the additional purpose of amplifying
sound waves. For a typical fish having such an anatomy, the bladder
has a resonant frequency of 300 Hz, the bladder’s Q is 3, and the
maximum amplification is about a factor of 100 in energy. Over what
range of frequencies would the amplification be at least a factor of
50?

3 As noted in section 17.4, it is only approximately true that the
amplitude has its maximum at f = (1/2π)

√
k/m. Being more care-

ful, we should actually define two different symbols, f0 = (1/2π)
√
k/m

and fo for the slightly different frequency at which the amplitude
is a maximum, i.e., the actual resonant frequency. In this notation,
the amplitude as a function of frequency is

A =
F

2π
√

4π2m2
(
f2 − f2

0

)2
+ b2f2

.

Show that the maximum occurs not at fo but rather at the frequency

fo =

√
f2

0 −
b2

8π2m2
=

√
f2

0 −
1

2
FWHM2

Hint: Finding the frequency that minimizes the quantity inside the
square root is equivalent to, but much easier than, finding the fre-
quency that maximizes the amplitude.
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4 (a) Let W be the amount of work done by friction in the first
cycle of oscillation, i.e., the amount of energy lost to heat. Find
the fraction of the original energy E that remains in the oscillations
after n cycles of motion.

(b) From this, prove the equation(
1− W

E

)Q
= e−2π

(recalling that the number 535 in the definition of Q is e2π).

(c) Use this to prove the approximation 1/Q ≈ (1/2π)W/E. (Hint:
Use the approximation ln(1 +x) ≈ x, which is valid for small values
of x.)

5 (a) We observe that the amplitude of a certain free oscillation
decreases from Ao to Ao/Z after n oscillations. Find its Q.

√

(b) The figure is from Shape memory in Spider draglines, Emile,
Le Floch, and Vollrath, Nature 440:621 (2006). Panel 1 shows an
electron microscope’s image of a thread of spider silk. In 2, a spi-
der is hanging from such a thread. From an evolutionary point of
view, it’s probably a bad thing for the spider if it twists back and
forth while hanging like this. (We’re referring to a back-and-forth
rotation about the axis of the thread, not a swinging motion like a
pendulum.) The authors speculate that such a vibration could make
the spider easier for predators to see, and it also seems to me that
it would be a bad thing just because the spider wouldn’t be able
to control its orientation and do what it was trying to do. Panel 3
shows a graph of such an oscillation, which the authors measured
using a video camera and a computer, with a 0.1 g mass hung from it
in place of a spider. Compared to human-made fibers such as kevlar
or copper wire, the spider thread has an unusual set of properties:

1. It has a low Q, so the vibrations damp out quickly.

2. It doesn’t become brittle with repeated twisting as a copper
wire would.

3. When twisted, it tends to settle in to a new equilibrium angle,
rather than insisting on returning to its original angle. You
can see this in panel 2, because although the experimenters
initially twisted the wire by 35 degrees, the thread only per-
formed oscillations with an amplitude much smaller than ±35
degrees, settling down to a new equilibrium at 27 degrees.

4. Over much longer time scales (hours), the thread eventually
resets itself to its original equilbrium angle (shown as zero
degrees on the graph). (The graph reproduced here only shows
the motion over a much shorter time scale.) Some human-
made materials have this “memory” property as well, but they
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typically need to be heated in order to make them go back to
their original shapes.

Focusing on property number 1, estimate the Q of spider silk from
the graph.

√

Problem 5.

6 An oscillator with sufficiently strong damping has its maximum
response at ω = 0. Using equation [4] on p. 495 , find the value of
Q at which this behavior sets in.

. Hint, p. 509 . Answer, p. 528
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7 The goal of this problem is to refine the proportionality
FWHM ∝ fres/Q into the equation FWHM = fres/Q, i.e., to prove
that the constant of proportionality equals 1.

(a) Show that the work done by a damping force F = −bv over one
cycle of steady-state motion equals Wdamp = −2π2bfA2. Hint: It
is less confusing to calculate the work done over half a cycle, from
x = −A to x = +A, and then double it.

(b) Show that the fraction of the undriven oscillator’s energy lost to
damping over one cycle is |Wdamp|/E = 4π2bf/k.

(c) Use the previous result, combined with the result of problem 4,
to prove that Q equals k/2πbf .

(d) Combine the preceding result for Q with the equation FWHM =
b/2πm from section 17.4 to prove the equation FWHM = fres/Q.

?

8 An oscillator has Q=6.00, and, for convenience, let’s assume
Fm = 1.00, ωo = 1.00, and m = 1.00. The usual approximations
would give

ωres = ωo ,

Ares = 6.00 , and

∆ω = 1/6.00 .

Determine these three quantities numerically using equation [4] on
p. 495 , and compare with the approximations.
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Exercise 17: Resonance
1. Compare the oscillator’s energies at A, B, C, and D.

2. Compare the Q values of the two oscillators.

3. Match the x-t graphs in #2 with the amplitude-frequency graphs below.
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Three essential mathematical skills

More often than not when a search-and-rescue team finds a hiker dead in the wilderness, it turns
out that the person was not carrying some item from a short list of essentials, such as water
and a map. There are three mathematical essentials in this course.

1. Converting units
basic technique: section 0.9, p. 26; conversion of area, volume, etc.: section 1.1, p. 37

Examples:

0.7��kg× 103 g

1��kg
= 700 g .

To check that we have the conversion factor the right way up (103 rather then 1/103), we note
that the smaller unit of grams has been compensated for by making the number larger.

For units like m2, kg/m3, etc., we have to raise the conversion factor to the appropriate power:

4 m3 ×
(

103 mm

1 m

)3

= 4× 109
��m

3 × mm3

��m3
= 4× 109 mm3

Examples with solutions — p. 33, #1; p. 52, #2

Problems you can check at lightandmatter.com/area1checker.html — p. 33, #3; p. 33, #2;
p. 33, #4; p. 52, #5; p. 52, #1

2. Reasoning about ratios and proportionalities
The technique is introduced in section 1.2, p. 39, in the context of area and volume, but it
applies more generally to any relationship in which one variable depends on another raised to
some power.

Example: When a car or truck travels over a road, there is wear and tear on the road surface,
which incurs a cost. Studies show that the cost per kilometer of travel C is given by

C = kw4 ,

where w is the weight per axle and k is a constant. The weight per axle is abot 13 times higher
for a semi-trailer than for my Honda Fit. How many times greater is the cost imposed on the
federal government when the semi travels a given distance on an interstate freeway?

. First we convert the equation into a proportionality by throwing out k, which is the same for
both vehicles:

C ∝ w4

Next we convert this proportionality to a statement about ratios:

C1

C2
=

(
w1

w2

)4

≈ 29, 000

Since the gas taxes I pay to drive my Fit are nowhere near 29,000 times more than those paid
to drive the truck the same distance, the federal government is effectively awarding a massive
subsidy to the trucking company. Plus my Fit is cuter.
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Examples with solutions — p. 52, #3; p. 52, #8; p. 52, #4; p. 112, #13; p. 112, #15; p. 245,
#3; p. 272, #1; p. 273, #6; p. 272, #3; p. 307, #7; p. 307, #8

Problems you can check at lightandmatter.com/area1checker.html — p. 54, #13; p. 53, #9;
p. 53, #10; p. 53, #11; p. 53, #12; p. 196, #4; p. 246, #6; p. 273, #7; p. 273, #8; p. 272, #4;
p. 306, #3; p. 450, #10

3. Vector addition
section 7.3, p. 204

Example: The ∆r vector from San Diego to Los Angeles has magnitude 190 km and direction
129◦counterclockwise from east. The one from LA to Las Vegas is 370 km at 38◦counterclockwise
from east. Find the distance and direction from San Diego to Las Vegas.

. Graphical addition is discussed on p. 204. Here we concentrate on analytic addition, which
involves adding the x components to find the total x component, and similarly for y. The trig
needed in order to find the components of the second leg (LA to Vegas) is laid out in figure d
on p. 202 and explained in detail in example 3 on p. 203:

∆x2 = (370 km) cos 38◦ = 292 km

∆y2 = (370 km) sin 38◦ = 228 km

(Since these are intermediate results, we keep an extra sig fig to avoid accumulating too much
rounding error.) Once we understand the trig for one example, we don’t need to reinvent the
wheel every time. The pattern is completely universal, provided that we first make sure to get
the angle expressed according to the usual trig convention, counterclockwise from the x axis.
Applying the pattern to the first leg, we have:

∆x1 = (190 km) cos 129◦ = −120 km

∆y1 = (190 km) sin 129◦ = 148 km

For the vector directly from San Diego to Las Vegas, we have

∆x = ∆x1 + ∆x2 = 172 km

∆y = ∆y1 + ∆y2 = 376 km .

The distance from San Diego to Las Vegas is found using the Pythagorean theorem,√
(172 km)2 + (376 km)2 = 410 km

(rounded to two sig figs because it’s one of our final results). The direction is one of the two
possible values of the inverse tangent

tan−1(∆y/∆x) = {65◦, 245◦} .

Consulting a sketch shows that the first of these values is the correct one.

Examples with solutions — p. 224, #3; p. 226, #9; p. 391, #8

Problems you can check at lightandmatter.com/area1checker.html — p. 211, #3; p. 211,
#4; p. 224, #4; p. 224, #5; p. 227, #16; p. 273, #13; p. 274, #14; p. 391, #9
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Programming with python

The purpose of this tutorial is to help you get
familiar with a computer programming lan-
guage called Python, which I’ve chosen be-
cause (a) it’s free, and (b) it’s easy to use inter-
actively. I won’t assume you have any previous
experience with computer programming; you
won’t need to learn very much Python, and
what little you do need to learn I’ll explain
explicitly. If you really want to learn Python
more thoroughly, there are a couple of excel-
lent books that you can download for free on
the Web:

How to Think Like a Computer Sci-
entist (Python Version), Allen B. Dow-
ney, Jeffrey Elkner, Moshe Zadka,
http://www.ibiblio.org/obp/

Dive Into Python, Mark Pilgrim,
http://diveintopython.net/

The first book is meant for people who have
never programmed before, while the second is
a more complete introduction aimed at vet-
eran programmers who know a different lan-
guage already.

Using Python as a calculator

The easiest way to get Python going is to go
to the web site ideone.com. Under “choose
a language,” select Python. Inside the win-
dow where it says “paste your source code or
insert template or sample,” type print(2+2).
Click on the “submit” button. The result, 4,
is shown under “output.” In other words, you
can use Python just like a calculator.

For compactness, I’ll show examples in the fol-
lowing style:

>>> print(2+2)

4

Here the >>> is not something you would type
yourself; it’s just a marker to distinguish your
input from the program’s output. (In some

other versions of Python, the computer will
actually print out >>> as a prompt to tell you
it’s ready to type something.)

There are only a couple of things to watch out
for. First, Python distinguishes between inte-
gers and real numbers, so the following gives
an unexpected result:

>>> print(2/3)

0

To get it to treat these values as real numbers,
you have to use decimal points:

>>> print(2./3.)

0.6666666666666666666663

Multiplication is represented by “*”:

>>> print(2.*3.)

6.0

Also, Python doesn’t know about its own li-
brary of math functions unless you tell it ex-
plicitly to load them in:

>>> print (sqrt(2.))

Traceback (most recent call last):

File ‘‘<stdin>’’, line 1, in ?

NameError: There is no variable named ‘sqrt’

Here are the steps you have to go through to
calculate the square root of 2 successfully:

>>> import math

>>> print(math.sqrt(2.))

1.4142135623730951

The first line is just something you can make a
habit of doing every time you start up Python.
In the second line, the name of the square
root function had to be prefixed with “math.”
to tell Python where you wanted to get this
“sqrt” function from. (All of this may seem
like a nuisance if you’re just using Python as a
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calculator, but it’s a good way to design a pro-
gramming language so that names of functions
never conflict.)

Try it. Experiment and figure out whether
Python’s trig functions assume radians or
degrees.

Variables

Python lets you define variables and assign
values to them using an equals sign:

>>> dwarfs=7

>>> print(dwarfs)

>>> print(dwarfs+3)

7

10

Note that a variable in computer programming
isn’t quite like a variable in algebra. In alge-
bra, if a=7 then a=7 always, throughout a
particular calculation. But in a programming
language, the variable name really represents
a place in memory where a number can be
stored, so you can change its value:

>>> dwarfs=7

>>> dwarfs=37

>>> print(dwarfs)

37

You can even do stuff like this,

>>> dwarfs=37

>>> dwarfs=dwarfs+1

>>> print(dwarfs)

38

In algebra it would be nonsense to have a vari-
able equal to itself plus one, but in a com-
puter program, it’s not an assertion that the
two things are equal, its a command to calcu-
late the value of the expression on the right
side of the equals, and then put that number
into the memory location referred to by the
variable name on the left.

Try it. What happens if you do dwarfs+1 =
dwarfs? Do you understand why?

Functions

Somebody had to teach Python how to do
functions like sqrt, and it’s handy to be able
to define your own functions in the same way.
Here’s how to do it:

>>> def double(x):

>>> return 2.*x

>>> print(double(5.))

10.0

Note that the indentation is mandatory. The
first and second lines define a function called
double. The final line evaluates that function
with an input of 5.

Loops
Suppose we want to add up all the numbers
from 0 to 99.

Automating this kind of thing is exactly what
computers are best at, and Python provides a
mechanism for this called a loop:

>>> sum=0

>>> for j in range(100):

>>> sum=sum+j

>>> print(sum)

4950

The stuff that gets repeated — the inside of
the loop — has to be indented, just like in
a function definition. Python always counts
loops starting from 0, so for j in range(100)

actually causes j to range from 0 to 99, not
from 1 to 100.
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Hints

Hints for chapter 8
Page 228, problem 18:
The easiest way to do this problem is to use two different coordinate systems: one that’s tilted
to coincide with the upper slope, and one that’s tilted to coincide with the lower one.

Page 228, problem 19:
Consider a section of the rope subtending a very small angle, and find an approximate equation
relating the normal force to the tension. Apply small-angle approximations to any trig functions
occurring in your result. Eliminate all variables except for the tension and the angle, and
separate these variables.

Hints for chapter 10
Page 276, problem 22:
If you try to calculate the two forces and subtract, your calculator will probably give a result of
zero due to rounding. Instead, reason about the fractional amount by which the quantity 1/r2

will change. As a warm-up, you may wish to observe the percentage change in 1/r2 that results
from changing r from 1 to 1.01.

Hints for chapter 13
Page 357, problem 13:
What does the total energy have to be if the projectile’s velocity is exactly escape velocity?
Write down conservation of energy, change v to dr/dt, separate the variables, and integrate.

Page 359, problem 20:
You can use the geometric interpretation of the dot product.

Page 360, problem 25:
The analytic approach is a little cumbersome, although it can be done by using approximations
like 1/

√
1 + ε ≈ 1 − (1/2)ε. A more straightforward, brute-force method is simply to write a

computer program that calculates U/m for a given point in spherical coordinates. By trial and
error, you can fairly rapidly find the r that gives a desired value of U/m.

Hints for chapter 15
Page 453, problem 28:
The choice of axis theorem only applies to a closed system, or to a system acted on by a total
force of zero. Even if the box is not going to rotate, its center of mass is going to accelerate,
and this can still cause a change in its angular momentum, unless the right axis is chosen. For
example, if the axis is chosen at the bottom right corner, then the box will start accumulating
clockwise angular momentum, even if it is just accelerating to the right without rotating. Only
by choosing the axis at the center of mass (or at some other point on the same horizontal line)
do we get a constant, zero angular momentum.

Page 455, problem 41:
You’ll need the result of problem 26 in order to relate the energy and angular momentum of a
rigidly rotating body. Since this relationship involves a variable raised to a power, you can’t
just graph the data and get the moment of inertia directly. One way to get around this is to
manipulate one of the variables to make the graph linear. Here is an example of this technique
from another context. Suppose you were given a table of the masses, m, of cubical pieces of
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wood, whose sides had various lengths, b. You want to find a best-fit value for the density of
the wood. The relationship is m = ρb3. The graph of m versus b would be a curve, and you
would not have any easy way to get the density from such a graph. But by graphing m versus
b3, you can produce a graph that is linear, and whose slope equals the density.

Hints for chapter 16
Page 475, problem 13:
The spring constant of this spring, k, is not the quantity you need in the equation for the period.
What you need in that equation is the second derivative of the spring’s energy with respect to
the position of the thing that’s oscillating. You need to start by finding the energy stored in
the spring as a function of the vertical position, y, of the mass. This is similar to example 5 on
page 468.

Hints for chapter 17
Page 501, problem 6:
The whole expression for the amplitude has maxima where the stuff inside the square root is at
a minimum, and vice versa, so you can save yourself a lot of work by just working on the stuff
inside the square root. For normal, large values of Q, the there are two extrema, one at ω = 0
and one at resonance; one of these is a maximum and one is a minimum. You want to find out
at what value of Q the zero-frequency extremum switches over from being a maximum to being
a minimum.

Solutions to selected problems

Solutions for chapter 0
Page 33, problem 1:

134 mg× 10−3 g

1 mg
× 10−3 kg

1 g
= 1.34× 10−4 kg

Page 33, problem 7:
(a) Let’s do 10.0 g and 1000 g. The arithmetic mean is 505 grams. It comes out to be 0.505 kg,
which is consistent. (b) The geometric mean comes out to be 100 g or 0.1 kg, which is consistent.
(c) If we multiply meters by meters, we get square meters. Multiplying grams by grams should
give square grams! This sounds strange, but it makes sense. Taking the square root of square
grams (g2) gives grams again. (d) No. The superduper mean of two quantities with units of
grams wouldn’t even be something with units of grams! Related to this shortcoming is the fact
that the superduper mean would fail the kind of consistency test carried out in the first two
parts of the problem.

Page 34, problem 10:
(a) They’re all defined in terms of the ratio of side of a triangle to another. For instance, the
tangent is the length of the opposite side over the length of the adjacent side. Dividing meters
by meters gives a unitless result, so the tangent, as well as the other trig functions, is unitless.
(b) The tangent function gives a unitless result, so the units on the right-hand side had better
cancel out. They do, because the top of the fraction has units of meters squared, and so does
the bottom.

509



Solutions for chapter 1
Page 52, problem 1:
The proportionality V ∝ L3 can be restated in terms of ratios as V1/V2 = (L1/L2)3 = (1/10)3 =
1/1000, so scaling down the linear dimensions by a factor of 1/10 reduces the volume by 1/1000,
to a milliliter.

Page 52, problem 2:

1 mm2 ×
(

1 cm

10 mm

)2

= 10−2 cm2

Page 52, problem 3:
The bigger scope has a diameter that’s ten times greater. Area scales as the square of the linear
dimensions, so A ∝ d2, or in the language of ratios A1/A2 = (d1/d2)2 = 100. Its light-gathering
power is a hundred times greater.

Page 52, problem 4:
The cone of mixed gin and vermouth is the same shape as the cone of vermouth, but its linear
dimensions are doubled. Translating the proportionality V ∝ L3 into an equation about ratios,
we have V1/V2 = (L1/L2)3 = 8. Since the ratio of the whole thing to the vermouth is 8, the
ratio of gin to vermouth is 7.

Page 52, problem 8:
Since they differ by two steps on the Richter scale, the energy of the bigger quake is 104 times
greater. The wave forms a hemisphere, and the surface area of the hemisphere over which the
energy is spread is proportional to the square of its radius, A ∝ r2, or r ∝

√
A, which means

r1/r2 =
√
A1/A2. If the amount of vibration was the same, then the surface areas must be in

the ratio A1/A2 = 104, which means that the ratio of the radii is 102.

Page 55, problem 22:
Let’s estimate the Great Wall’s volume, and then figure out how many bricks that would repre-
sent. The wall is famous because it covers pretty much all of China’s northern border, so let’s
say it’s 1000 km long. From pictures, it looks like it’s about 10 m high and 10 m wide, so the
total volume would be 106 m× 10 m× 10 m = 108 m3. If a single brick has a volume of 1 liter,
or 10−3 m3, then this represents about 1011 bricks. If one person can lay 10 bricks in an hour
(taking into account all the preparation, etc.), then this would be 1010 man-hours.

Page 55, problem 24:
Directly guessing the number of jelly beans would be like guessing volume directly. That would
be a mistake. Instead, we start by estimating the linear dimensions, in units of beans. The
contents of the jar look like they’re about 10 beans deep. Although the jar is a cylinder,
its exact geometrical shape doesn’t really matter for the purposes of our order-of-magnitude
estimate. Let’s pretend it’s a rectangular jar. The horizontal dimensions are also something like
10 beans, so it looks like the jar has about 10× 10× 10 or ∼ 103 beans inside.

Solutions for chapter 2
Page 92, problem 1:
Since the lines are at intervals of one m/s and one second, each box represents one meter. From
t = 0 to t = 2 s, the area under the curve represents a positive ∆x of 6 m. (The triangle has half
the area of the 2× 6 rectangle it fits inside.) After t = 2 s, the area above the curve represents
negative ∆x. To get −6 m worth of area, we need to go out to t = 6 s, at which point the
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triangle under the axis has a width of 4 s and a height of 3 m/s, for an area of 6 m (half of
3× 4).

Page 93, problem 8:
(a) Let f and g be functions. Then the chain rule states that if we construct the function
f(g(x)), its derivative is

df

dx
=

df

dg
· dg

dx
.

On the right-hand side, the units of dg on the top cancel with the units of dg on the bottom,
so the units do match up with those of df/dx on the left.
(b) The cosine function requires a unitless input and produces a unitless output. Therefore A
must have units of meters, and b must have units of s−1 (inverse seconds, or “per second”). A
is the distance the object moves on either side of the origin, and b is a measure of how fast it
vibrates back and forth (how many radians it passes through per second).
(b) The derivative is v = dx/dt = −Ab sin(bt), where the factor of b in front comes from the
chain rule. The product Ab does have units of m/s. If we hadn’t put in the factor of b as
required by the chain rule, the units would have been wrong. Physically, it also makes sense
that a larger b, indicating a more rapid vibration, produces a greater v.

Page 93, problem 10:
In one second, the ship moves v meters to the east, and the person moves v meters north relative
to the deck. Relative to the water, he traces the diagonal of a triangle whose length is given
by the Pythagorean theorem, (v2 + v2)1/2 =

√
2v. Relative to the water, he is moving at a

45-degree angle between north and east.

Page 93, problem 11:
Velocity is relative, so having to lean tells you nothing about the train’s velocity. Fullerton is
moving at a huge speed relative to Beijing, but that doesn’t produce any noticeable effect in
either city. The fact that you have to lean tells you that the train is changing its speed, but it
doesn’t tell you what the train’s current speed is.

Page 93, problem 13:
To the person riding the moving bike, bug A is simply going in circles. The only difference
between the motions of the two wheels is that one is traveling through space, but motion is
relative, so this doesn’t have any effect on the bugs. It’s equally hard for each of them.

Solutions for chapter 3
Page 111, problem 1:
Taking g to be 10 m/s2, the bullet loses 10 m/s of speed every second, so it will take 10 s to
come to a stop, and then another 10 s to come back down, for a total of 20 s.

Page 111, problem 4:

v =
dx

dt
= 10− 3t2

a =
dv

dt
= −6t

= −18 m/s2
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Page 111, problem 6:

Page 111, problem 7:
(a) We choose a coordinate system with positive pointing to the right. Some people might
expect that the ball would slow down once it was on the more gentle ramp. This may be true
if there is significant friction, but Galileo’s experiments with inclined planes showed that when
friction is negligible, a ball rolling on a ramp has constant acceleration, not constant speed. The
speed stops increasing as quickly once the ball is on the more gentle slope, but it still keeps on
increasing. The a-t graph can be drawn by inspecting the slope of the v-t graph.

(b) The ball will roll back down, so the second half of the motion is the same as in part a. In
the first (rising) half of the motion, the velocity is negative, since the motion is in the opposite
direction compared to the positive x axis. The acceleration is again found by inspecting the
slope of the v-t graph.

Page 111, problem 8:
This is a case where it’s probably easiest to draw the acceleration graph first. While the ball
is in the air (bc, de, etc.), the only force acting on it is gravity, so it must have the same,
constant acceleration during each hop. Choosing a coordinate system where the positive x axis
points up, this becomes a negative acceleration (force in the opposite direction compared to the
axis). During the short times between hops when the ball is in contact with the ground (cd,
ef, etc.), it experiences a large acceleration, which turns around its velocity very rapidly. These
short positive accelerations probably aren’t constant, but it’s hard to know how they’d really
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look. We just idealize them as constant accelerations. Similarly, the hand’s force on the ball
during the time ab is probably not constant, but we can draw it that way, since we don’t know
how to draw it more realistically. Since our acceleration graph consists of constant-acceleration
segments, the velocity graph must consist of line segments, and the position graph must consist
of parabolas. On the x graph, I chose zero to be the height of the center of the ball above the
floor when the ball is just lying on the floor. When the ball is touching the floor and compressed,
as in interval cd, its center is below this level, so its x is negative.

Page 112, problem 11:
(a) Solving for ∆x = 1

2at
2 for a, we find a = 2∆x/t2 = 5.51 m/s2. (b) v =

√
2a∆x = 66.6 m/s.

(c) The actual car’s final velocity is less than that of the idealized constant-acceleration car. If
the real car and the idealized car covered the quarter mile in the same time but the real car
was moving more slowly at the end than the idealized one, the real car must have been going
faster than the idealized car at the beginning of the race. The real car apparently has a greater
acceleration at the beginning, and less acceleration at the end. This make sense, because every
car has some maximum speed, which is the speed beyond which it cannot accelerate.

Page 112, problem 13:
∆x = 1

2at
2, so for a fixed value of ∆x, we have t ∝ 1/

√
a. Translating this into the language of

ratios gives tM/tE = sqrtaE/aM =
√

3 = 1.7.

Page 112, problem 15:
We have v2

f = 2a∆x, so the distance is proportional to the square of the velocity. To get up to
half the speed, the ball needs 1/4 the distance, i.e., L/4.

Solutions for chapter 4
Page 146, problem 1:
a = ∆v/∆t, and also a = F/m, so

∆t =
∆v

a

=
m∆v

F

=
(1000 kg)(50 m/s− 20 m/s)

3000 N
= 10 s
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Page 146, problem 4:
(a) This is a measure of the box’s resistance to a change in its state of motion, so it measures
the box’s mass. The experiment would come out the same in lunar gravity.
(b) This is a measure of how much gravitational force it feels, so it’s a measure of weight. In
lunar gravity, the box would make a softer sound when it hit.
(c) As in part a, this is a measure of its resistance to a change in its state of motion: its mass.
Gravity isn’t involved at all.

Solutions for chapter 5
Page 178, problem 1:
(a) The swimmer’s acceleration is caused by the water’s force on the swimmer, and the swimmer
makes a backward force on the water, which accelerates the water backward. (b) The club’s
normal force on the ball accelerates the ball, and the ball makes a backward normal force on the
club, which decelerates the club. (c) The bowstring’s normal force accelerates the arrow, and
the arrow also makes a backward normal force on the string. This force on the string causes the
string to accelerate less rapidly than it would if the bow’s force was the only one acting on it.
(d) The tracks’ backward frictional force slows the locomotive down. The locomotive’s forward
frictional force causes the whole planet earth to accelerate by a tiny amount, which is too small
to measure because the earth’s mass is so great.

Page 178, problem 2:
The person’s normal force on the box is paired with the box’s normal force on the person. The
dirt’s frictional force on the box pairs with the box’s frictional force on the dirt. The earth’s
gravitational force on the box matches the box’s gravitational force on the earth.

Page 178, problem 3:
(a) A liter of water has a mass of 1.0 kg. The mass is the same in all three locations. Mass
indicates how much an object resists a change in its motion. It has nothing to do with gravity.
(b) The term “weight” refers to the force of gravity on an object. The bottle’s weight on earth
is FW = mg = 9.8 N. Its weight on the moon is about one sixth that value, and its weight in
interstellar space is zero.

Page 183, problem 26:

(a)

top spring’s rightward force on connector
...connector’s leftward force on top spring
bottom spring’s rightward force on connector
...connector’s leftward force on bottom spring
hand’s leftward force on connector
...connector’s rightward force on hand

Looking at the three forces on the connector, we see that the hand’s force must be double the
force of either spring. The value of x− xo is the same for both springs and for the arrangement
as a whole, so the spring constant must be 2k. This corresponds to a stiffer spring (more force
to produce the same extension).

(b) Forces in which the left spring participates:
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hand’s leftward force on left spring
...left spring’s rightward force on hand
right spring’s rightward force on left spring
...left spring’s leftward force on right spring

Forces in which the right spring participates:

left spring’s leftward force on right spring
...right spring’s rightward force on left spring
wall’s rightward force on right spring
...right spring’s leftward force on wall

Since the left spring isn’t accelerating, the total force on it must be zero, so the two forces acting
on it must be equal in magnitude. The same applies to the two forces acting on the right spring.
The forces between the two springs are connected by Newton’s third law, so all eight of these
forces must be equal in magnitude. Since the value of x−xo for the whole setup is double what
it is for either spring individually, the spring constant of the whole setup must be k/2, which
corresponds to a less stiff spring.

Page 183, problem 28:
(a) Spring constants in parallel add, so the spring constant has to be proportional to the cross-
sectional area. Two springs in series give half the spring constant, three springs in series give 1/3,
and so on, so the spring constant has to be inversely proportional to the length. Summarizing,
we have k ∝ A/L. (b) With the Young’s modulus, we have k = (A/L)E.The spring constant
has units of N/m, so the units of E would have to be N/m2.

Solutions for chapter 7
Page 212, problem 7:
We’ll use the same approach as in the example in section 7.5, which is to find an example such
that when the calculation is carried out in a rotated frame of reference, the result is clearly not
the same vector expressed in the new frame. Let A = πx̂ in the original coordinate system.
Then in this coordinate system B = 0.

But now suppose we choose a new coordinate system, rotated by 10 degrees relative to the first
one. In this new coordinate system, Ax is a little less than π. Since Ax is no longer a multiple of
π, Bx is no longer zero, and B is no longer zero. The nonzero B computed in the new coordinate
system is clearly not the same as the old B expressed in a new way, since rotating our coordinate
system should not change the magnitudes of vectors.

Solutions for chapter 8
Page 224, problem 3:
We want to find out about the velocity vector vBG of the bullet relative to the ground, so we need
to add Annie’s velocity relative to the ground vAG to the bullet’s velocity vector vBA relative
to her. Letting the positive x axis be east and y north, we have

vBA,x = (140 mi/hr) cos 45◦

= 100 mi/hr

vBA,y = (140 mi/hr) sin 45◦

= 100 mi/hr
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and

vAG,x = 0

vAG,y = 30 mi/hr .

The bullet’s velocity relative to the ground therefore has components

vBG,x = 100 mi/hrand

vBG,y = 130 mi/hr .

Its speed on impact with the animal is the magnitude of this vector

|vBG| =
√

(100 mi/hr)2 + (130 mi/hr)2

= 160 mi/hr

(rounded off to 2 significant figures).

Page 226, problem 9:
Since its velocity vector is constant, it has zero acceleration, and the sum of the force vectors
acting on it must be zero. There are three forces acting on the plane: thrust, lift, and gravity.
We are given the first two, and if we can find the third we can infer its mass. The sum of the y
components of the forces is zero, so

0 = Fthrust,y + Flift,y + FW ,y

= |Fthrust| sin θ + |Flift| cos θ −mg .

The mass is

m = (|Fthrust| sin θ + |Flift| cos θ)/g

= 6.9× 104 kg

Page 227, problem 13:
(a) If there was no friction, the angle of repose would be zero, so the coefficient of static friction,
µs, will definitely matter. We also make up symbols θ, m and g for the angle of the slope, the
mass of the object, and the acceleration of gravity. The forces form a triangle just like the one
in section 8.3, but instead of a force applied by an external object, we have static friction, which
is less than µs|FN |. As in that example, |Fs| = mg sin θ, and |Fs| < µs|FN |, so

mg sin θ < µs|FN | .

From the same triangle, we have |FN | = mg cos θ, so

mg sin θ < µsmg cos θ .

Rearranging,
θ < tan−1 µs .

(b) Both m and g canceled out, so the angle of repose would be the same on an asteroid.

Page 227, problem 14:
(a) Since the wagon has no acceleration, the total forces in both the x and y directions must
be zero. There are three forces acting on the wagon: FT , FW , and the normal force from the
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ground, FN . If we pick a coordinate system with x being horizontal and y vertical, then the
angles of these forces measured counterclockwise from the x axis are 90◦− φ, 270◦, and 90◦+ θ,
respectively. We have

Fx,total = |FT | cos(90◦ − φ) + |FW | cos(270◦) + |FN | cos(90◦ + θ)

Fy,total = |FT | sin(90◦ − φ) + |FW | sin(270◦) + |FN | sin(90◦ + θ) ,

which simplifies to

0 = |FT | sinφ− |FN | sin θ
0 = |FT | cosφ− |FW |+ |FN | cos θ.

The normal force is a quantity that we are not given and do not with to find, so we should
choose it to eliminate. Solving the first equation for |FN | = (sinφ/ sin θ)|FT |, we eliminate |FN |
from the second equation,

0 = |FT | cosφ− |FW |+ |FT | sinφ cos θ/ sin θ

and solve for |FT |, finding

|FT | =
|FW |

cosφ+ sinφ cos θ/ sin θ
.

Multiplying both the top and the bottom of the fraction by sin θ, and using the trig identity for
sin(θ + φ) gives the desired result,

|FT | =
sin θ

sin(θ + φ)
|FW | .

(b) The case of φ = 0, i.e., pulling straight up on the wagon, results in |FT | = |FW |: we simply
support the wagon and it glides up the slope like a chair-lift on a ski slope. In the case of
φ = 180◦ − θ, |FT | becomes infinite. Physically this is because we are pulling directly into the
ground, so no amount of force will suffice.

Solutions for chapter 9
Page 245, problem 3:
(a) The inward normal force must be sufficient to produce circular motion, so

|FN | = mv2/r .

We are searching for the minimum speed, which is the speed at which the static friction force is
just barely able to cancel out the downward gravitational force. The maximum force of static
friction is

|Fs| = µs|FN | ,

and this cancels the gravitational force, so

|Fs| = mg .

Solving these three equations for v gives

v =

√
gr

µs
.
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(b) Greater by a factor of
√

3.

Page 246, problem 5:
The inward force must be supplied by the inward component of the normal force,

|FN | sin θ = mv2/r .

The upward component of the normal force must cancel the downward force of gravity,

|FN | cos θ = mg.

Eliminating |FN | and solving for θ, we find

θ = tan−1

(
v2

gr

)
.

Page 247, problem 10:
Each cyclist has a radial acceleration of v2/r = 5 m/s2. The tangential accelerations of cyclists
A and B are 375 N/75 kg = 5 m/s2.

Solutions for chapter 10
Page 272, problem 1:
Newton’s law of gravity tells us that her weight will be 6000 times smaller because of the
asteroid’s smaller mass, but 132 = 169 times greater because of its smaller radius. Putting these
two factors together gives a reduction in weight by a factor of 6000/169, so her weight will be
(400 N)(169)/(6000) = 11 N.

Page 272, problem 3:
(a) The asteroid’s mass depends on the cube of its radius, and for a given mass the surface
gravity depends on r−2. The result is that surface gravity is directly proportional to radius.
Half the gravity means half the radius, or one eighth the mass. (b) To agree with a, Earth’s
mass would have to be 1/8 Jupiter’s. We assumed spherical shapes and equal density. Both
planets are at least roughly spherical, so the only way out of the contradiction is if Jupiter’s
density is significantly less than Earth’s.

Page 273, problem 6:
Newton’s law of gravity depends on the inverse square of the distance, so if the two planets’
masses had been equal, then the factor of 0.83/0.059 = 14 in distance would have caused the
force on planet c to be 142 = 2.0 × 102 times weaker. However, planet c’s mass is 3.0 times
greater, so the force on it is only smaller by a factor of 2.0× 102/3.0 = 65.

Page 276, problem 20:
Newton’s law of gravity says F = Gm1m2/r

2, and Newton’s second law says F = m2a, so
Gm1m2/r

2 = m2a. Since m2 cancels, a is independent of m2.
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Page 276, problem 21:
Newton’s second law gives

F = mDaD ,

where F is Ida’s force on Dactyl. Using Newton’s universal law of gravity, F= GmImD/r
2,and

the equation a = v2/r for circular motion, we find

GmImD/r
2 = mDv

2/r.

Dactyl’s mass cancels out, giving

GmI/r
2 = v2/r.

Dactyl’s velocity equals the circumference of its orbit divided by the time for one orbit: v =
2πr/T . Inserting this in the above equation and solving for mI , we find

mI =
4π2r3

GT 2
,

so Ida’s density is

ρ = mI/V

=
4π2r3

GV T 2
.

Page 276, problem 22:
Any fractional change in r results in double that amount of fractional change in 1/r2. For
example, raising r by 1% causes 1/r2 to go down by very nearly 2%. A 27-day orbit is 1/13.5
of a year, so the fractional change in 1/r2 is

2× (1/13.5) cm

3.84× 105 km
× 1 km

105 cm
= 4× 10−12

Solutions for chapter 11
Page 307, problem 6:
A force is an interaction between two objects, so while the bullet is in the air, there is no force.
There is only a force while the bullet is in contact with the book. There is energy the whole
time, and the total amount doesn’t change. The bullet has some kinetic energy, and transfers
some of it to the book as heat, sound, and the energy required to tear a hole through the book.

Page 307, problem 7:
(a) The energy stored in the gasoline is being changed into heat via frictional heating, and also
probably into sound and into energy of water waves. Note that the kinetic energy of the propeller
and the boat are not changing, so they are not involved in the energy transformation. (b) The
crusing speed would be greater by a factor of the cube root of 2, or about a 26% increase.

Page 307, problem 8:
We don’t have actual masses and velocities to plug in to the equation, but that’s OK. We just
have to reason in terms of ratios and proportionalities. Kinetic energy is proportional to mass
and to the square of velocity, so B’s kinetic energy equals

(13.4 J)(3.77)/(2.34)2 = 9.23 J
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Page 307, problem 11:
Room temperature is about 20◦C. The fraction of the energy that actually goes into heating
the water is

(250 g)/(0.24 g·◦C/J)× (100◦C− 20◦C)

(1.25× 103 J/s) (126 s)
= 0.53

So roughly half of the energy is wasted. The wasted energy might be in several forms: heating
of the cup, heating of the oven itself, or leakage of microwaves from the oven.

Solutions for chapter 12
Page 325, problem 6:

Etotal,i = Etotal,f

PEi + heati = PEf +KEf + heatf
1

2
mv2 = PEi − PEf + heati − heatf

= −∆PE −∆heat

v =

√
2

(
−∆PE −∆heat

m

)
= 6.4 m/s

Page 326, problem 10:
(a) Example: As one child goes up on one side of a see-saw, another child on the other side
comes down. (b) Example: A pool ball hits another pool ball, and transfers some KE.

Page 326, problem 12:
Suppose the river is 1 m deep, 100 m wide, and flows at a speed of 10 m/s, and that the falls
are 100 m tall. In 1 second, the volume of water flowing over the falls is 103 m3, with a mass of
106 kg. The potential energy released in one second is (106 kg)(g)(100 m) = 109 J, so the power
is 109 W. A typical household might have 10 hundred-watt applicances turned on at any given
time, so it consumes about 103 watts on the average. The plant could supply a about million
households with electricity.

Page 327, problem 16:
Let θ be the angle by which he has progressed around the pipe. Conservation of energy gives

Etotal,i = Etotal,f

PEi = PEf +KEf

Let’s make PE = 0 at the top, so

0 = mgr(cos θ − 1) +
1

2
mv2 .

While he is still in contact with the pipe, the radial component of his acceleration is

ar =
v2

r
,

and making use of the previous equation we find

ar = 2g(1− cos θ) .
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There are two forces on him, a normal force from the pipe and a downward gravitation force
from the earth. At the moment when he loses contact with the pipe, the normal force is zero,
so the radial component, mg cos θ, of the gravitational force must equal mar,

mg cos θ = 2mg(1− cos θ) ,

which gives

cos θ =
2

3
.

The amount by which he has dropped is r(1− cos θ), which equals r/3 at this moment.

Solutions for chapter 13
Page 354, problem 4:
No. Work describes how energy was transferred by some process. It isn’t a measurable property
of a system.

Solutions for chapter 14
Page 390, problem 3:
By conservation of momentum, the total momenta of the pieces after the explosion is the same
as the momentum of the firework before the explosion. However, there is no law of conservation
of kinetic energy, only a law of conservation of energy. The chemical energy in the gunpowder
is converted into heat and kinetic energy when it explodes. All we can say about the kinetic
energy of the pieces is that their total is greater than the kinetic energy before the explosion.

Page 391, problem 8:
Let m be the mass of the little puck and M = 2.3m be the mass of the big one. All we need
to do is find the direction of the total momentum vector before the collision, because the total
momentum vector is the same after the collision. Given the two components of the momentum
vector px = Mv and py = mv, the direction of the vector is tan−1(py/px) = 23◦ counterclockwise
from the big puck’s original direction of motion.

Page 392, problem 12:
Momentum is a vector. The total momentum of the molecules is always zero, since the momenta
in different directions cancal out on the average. Cooling changes individual molecular momenta,
but not the total.

Page 392, problem 15:
(a) Particle i had velocity vi in the center-of-mass frame, and has velocity vi + u in the new
frame. The total kinetic energy is

1

2
m1 (v1 + u)2 + . . . ,

where “. . . ” indicates that the sum continues for all the particles. Rewriting this in terms of
the vector dot product, we have

1

2
m1 (v1 + u) · (v1 + u) + . . . =

1

2
m1 (v1 · v1 + 2u · v1 + u · u) + . . . .

When we add up all the terms like the first one, we get Kcm. Adding up all the terms like the
third one, we get M |u|2/2. The terms like the second term cancel out:

m1u · v1 + . . . = u · (m1v1 + . . .) ,
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where the sum in brackets equals the total momentum in the center-of-mass frame, which is
zero by definition.
(b) Changing frames of reference doesn’t change the distances between the particles, so the
potential energies are all unaffected by the change of frames of reference. Suppose that in a
given frame of reference, frame 1, energy is conserved in some process: the initial and final
energies add up to be the same. First let’s transform to the center-of-mass frame. The potential
energies are unaffected by the transformation, and the total kinetic energy is simply reduced
by the quantity M |u1|2/2, where u1 is the velocity of frame 1 relative to the center of mass.
Subtracting the same constant from the initial and final energies still leaves them equal. Now
we transform to frame 2. Again, the effect is simply to change the initial and final energies by
adding the same constant.

Page 392, problem 16:
A conservation law is about addition: it says that when you add up a certain thing, the total
always stays the same. Funkosity would violate the additive nature of conservation laws, because
a two-kilogram mass would have twice as much funkosity as a pair of one-kilogram masses moving
at the same speed.

Solutions for chapter 15
Page 450, problem 8:
The pliers are not moving, so their angular momentum remains constant at zero, and the total
torque on them must be zero. Not only that, but each half of the pliers must have zero total
torque on it. This tells us that the magnitude of the torque at one end must be the same as
that at the other end. The distance from the axis to the nut is about 2.5 cm, and the distance
from the axis to the centers of the palm and fingers are about 8 cm. The angles are close
enough to 90◦ that we can pretend they’re 90 degrees, considering the rough nature of the other
assumptions and measurements. The result is (300 N)(2.5 cm) = (F )(8 cm), or F = 90 N.

Page 456, problem 46:
The foot of the rod is moving in a circle relative to the center of the rod, with speed v = πb/T ,
and acceleration v2/(b/2) = (π2/8)g. This acceleration is initially upward, and is greater in
magnitude than g, so the foot of the rod will lift off without dragging. We could also worry
about whether the foot of the rod would make contact with the floor again before the rod
finishes up flat on its back. This is a question that can be settled by graphing, or simply by
inspection of figure aj on page 429. The key here is that the two parts of the acceleration are
both independent of m and b, so the result is univeral, and it does suffice to check a graph in
a single example. In practical terms, this tells us something about how difficult the trick is to
do. Because π2/8 = 1.23 isn’t much greater than unity, a hit that is just a little too weak (by
a factor of 1.231/2 = 1.11) will cause a fairly obvious qualitative change in the results. This is
easily observed if you try it a few times with a pencil.

Answers to self-checks

Answers to self-checks for chapter 0
Page 13, self-check A:
If only he has the special powers, then his results can never be reproduced.

Page 15, self-check B:
They would have had to weigh the rays, or check for a loss of weight in the object from which
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they were have emitted. (For technical reasons, this was not a measurement they could actually
do, hence the opportunity for disagreement.)

Page 21, self-check C:
A dictionary might define “strong” as “possessing powerful muscles,” but that’s not an oper-
ational definition, because it doesn’t say how to measure strength numerically. One possible
operational definition would be the number of pounds a person can bench press.

Page 25, self-check D:
A microsecond is 1000 times longer than a nanosecond, so it would seem like 1000 seconds, or
about 20 minutes.

Page 26, self-check E:
Exponents have to do with multiplication, not addition. The first line should be 100 times
longer than the second, not just twice as long.

Page 29, self-check F:
The various estimates differ by 5 to 10 million. The CIA’s estimate includes a ridiculous number
of gratuitous significant figures. Does the CIA understand that every day, people in are born
in, die in, immigrate to, and emigrate from Nigeria?

Page 29, self-check G:
(1) 4; (2) 2; (3) 2

Answers to self-checks for chapter 1
Page 38, self-check A:
1 yd2 × (3 ft/1 yd)2 = 9 ft2

1 yd3 × (3 ft/1 yd)3 = 27 ft3

Page 44, self-check B:
C1/C2 = (w1/w2)4

Answers to self-checks for chapter 2
Page 63, self-check A:
Coasting on a bike and coasting on skates give one-dimensional center-of-mass motion, but
running and pedaling require moving body parts up and down, which makes the center of mass
move up and down. The only example of rigid-body motion is coasting on skates. (Coasting on
a bike is not rigid-body motion, because the wheels twist.)

Page 63, self-check B:
By shifting his weight around, he can cause the center of mass not to coincide with the geometric
center of the wheel.

Page 64, self-check C:
(1) a point in time; (2) time in the abstract sense; (3) a time interval

Page 66, self-check D:
Zero, because the “after” and “before” values of x are the same.

Page 71, self-check E:
(1) The effect only occurs during blastoff, when their velocity is changing. Once the rocket
engines stop firing, their velocity stops changing, and they no longer feel any effect. (2) It is
only an observable effect of your motion relative to the air.

Page 83, self-check F:
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At v = 0, we get γ = 1, so t = T . There is no time distortion unless the two frames of reference
are in relative motion.

Answers to self-checks for chapter 3
Page 99, self-check A:
Its speed increases at a steady rate, so in the next second it will travel 19 cm.

Answers to self-checks for chapter 4
Page 129, self-check A:
(1) The case of ρ = 0 represents an object falling in a vacuum, i.e., there is no density of air.
The terminal velocity would be infinite. Physically, we know that an object falling in a vacuum
would never stop speeding up, since there would be no force of air friction to cancel the force of
gravity. (2) The 4-cm ball would have a mass that was greater by a factor of 4× 4× 4, but its
cross-sectional area would be greater by a factor of 4× 4. Its terminal velocity would be greater
by a factor of

√
43/42 = 2. (3) It isn’t of any general importance. It’s just an example of one

physical situation. You should not memorize it.

Page 132, self-check B:
(1) This is motion, not force. (2) This is a description of how the sub is able to get the water
to produce a forward force on it. (3) The sub runs out of energy, not force.

Answers to self-checks for chapter 5
Page 153, self-check A:
The sprinter pushes backward against the ground, and by Newton’s third law, the ground pushes
forward on her. (Later in the race, she is no longer accelerating, but the ground’s forward force
is needed in order to cancel out the backward forces, such as air friction.)

Page 160, self-check B:
(1) It’s kinetic friction, because her uniform is sliding over the dirt. (2) It’s static friction,
because even though the two surfaces are moving relative to the landscape, they’re not slipping
over each other. (3) Only kinetic friction creates heat, as when you rub your hands together. If
you move your hands up and down together without sliding them across each other, no heat is
produced by the static friction.

Page 161, self-check C:
By the POFOSTITO mnemonic, we know that each of the bird’s forces on the trunk will be of
the same type as the corresponding force of the tree on the bird, but in the opposite direction.
The bird’s feet make a normal force on the tree that is to the right and a static frictional force
that is downward.

Page 161, self-check D:
Frictionless ice can certainly make a normal force, since otherwise a hockey puck would sink
into the ice. Friction is not possible without a normal force, however: we can see this from the
equation, or from common sense, e.g., while sliding down a rope you do not get any friction
unless you grip the rope.

Page 162, self-check E:
(1) Normal forces are always perpendicular to the surface of contact, which means right or left
in this figure. Normal forces are repulsive, so the cliff’s force on the feet is to the right, i.e., away
from the cliff. (2) Frictional forces are always parallel to the surface of contact, which means
right or left in this figure. Static frictional forces are in the direction that would tend to keep
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the surfaces from slipping over each other. If the wheel was going to slip, its surface would be
moving to the left, so the static frictional force on the wheel must be in the direction that would
prevent this, i.e., to the right. This makes sense, because it is the static frictional force that
accelerates the dragster. (3) Normal forces are always perpendicular to the surface of contact.
In this diagram, that means either up and to the left or down and to the right. Normal forces
are repulsive, so the ball is pushing the bat away from itself. Therefore the ball’s force is down
and to the right on this diagram.

Answers to self-checks for chapter 6
Page 189, self-check A:
The wind increases the ball’s overall speed. If you think about it in terms of overall speed,
it’s not so obvious that the increased speed is exactly sufficient to compensate for the greater
distance. However, it becomes much simpler if you think about the forward motion and the
sideways motion as two separate things. Suppose the ball is initially moving at one meter per
second. Even if it picks up some sideways motion from the wind, it’s still getting closer to the
wall by one meter every second.

Answers to self-checks for chapter 7
Page 201, self-check A:
v = ∆r/∆t

Page 201, self-check B:

Page 206, self-check C:
A −B is equivalent to A + (−B), which can be calculated graphically by reversing B to form
−B, and then adding it to A.

Answers to self-checks for chapter 8
Page 216, self-check A:
(1) It is speeding up, because the final velocity vector has the greater magnitude. (2) The result
would be zero, which would make sense. (3) Speeding up produced a ∆v vector in the same
direction as the motion. Slowing down would have given a ∆v that pointed backward.

Page 217, self-check B:
As we have already seen, the projectile has ax = 0 and ay = −g, so the acceleration vector is
pointing straight down.

Answers to self-checks for chapter 9
Page 235, self-check A:
(1) Uniform. They have the same motion as the drum itself, which is rotating as one solid piece.
No part of the drum can be rotating at a different speed from any other part. (2) Nonuniform.
Gravity speeds it up on the way down and slows it down on the way up.

Answers to self-checks for chapter 10
Page 254, self-check A:
It would just stay where it was. Plugging v = 0 into eq. [1] would give F = 0, so it would not
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accelerate from rest, and would never fall into the sun. No astronomer had ever observed an
object that did that!

Page 255, self-check B:

F ∝ mr/T 2 ∝ mr/(r3/2)2 ∝ mr/r3 = m/r2

Page 258, self-check C:
The equal-area law makes equally good sense in the case of a hyperbolic orbit (and observations
verify it). The elliptical orbit law had to be generalized by Newton to include hyperbolas. The
law of periods doesn’t make sense in the case of a hyperbolic orbit, because a hyperbola never
closes back on itself, so the motion never repeats.

Page 263, self-check D:
Above you there is a small part of the shell, comprising only a tiny fraction of the earth’s mass.
This part pulls you up, while the whole remainder of the shell pulls you down. However, the
part above you is extremely close, so it makes sense that its force on you would be far out of
proportion to its small mass.

Answers to self-checks for chapter 11
Page 294, self-check A:
(1) A spring-loaded toy gun can cause a bullet to move, so the spring is capable of storing energy
and then converting it into kinetic energy. (2) The amount of energy stored in the spring relates
to the amount of compression, which can be measured with a ruler.

Answers to self-checks for chapter 12
Page 318, self-check A:
Both balls start from the same height and end at the same height, so they have the same ∆y.
This implies that their losses in potential energy are the same, so they must both have gained
the same amount of kinetic energy.

Answers to self-checks for chapter 13
Page 332, self-check A:
Work is defined as the transfer of energy, so like energy it is a scalar with units of joules.

Page 335, self-check B:
Whenever energy is transferred out of the spring, the same amount has to be transferred into
the ball, and vice versa. As the spring compresses, the ball is doing positive work on the spring
(giving up its KE and transferring energy into the spring as PE), and as it decompresses the
ball is doing negative work (extracting energy).

Page 338, self-check C:
(a) No. The pack is moving at constant velocity, so its kinetic energy is staying the same. It
is only moving horizontally, so its gravitational potential energy is also staying the same. No
energy transfer is occurring. (b) No. The horse’s upward force on the pack forms a 90-degree
angle with the direction of motion, so cos θ = 0, and no work is done.

Page 341, self-check D:
Only in (a) can we use Fd to calculate work. In (b) and (c), the force is changing as the distance
changes.

Answers to self-checks for chapter 14
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Page 385, self-check A:
When m = 0, we have E = p (or E = pc, in units with c 6= 1), which is what we expect.

Answers to self-checks for chapter 15
Page 407, self-check A:
1, 2, and 4 all have the same sigm, because they are trying to twist the wrench clockwise. The
sign of torque 3 is opposite to the signs of the others. The magnitude of torque 3 is the greatest,
since it has a large r, and the force is nearly all perpendicular to the wrench. Torques 1 and 2
are the same because they have the same values of r and F⊥. Torque 4 is the smallest, due to
its small r.

Page 418, self-check B:
One person’s θ-t graph would simply be shifted up or down relative to the others. The derivative
equals the slope of the tangent line, and this slope isn’t changed when you shift the graph, so
both people would agree on the angular velocity.

Page 420, self-check C:
Reversing the direction of ω also reverses the direction of motion, and this is reflected by the
relationship between the plus and minus signs. In the equation for the radial acceleration, ω is
squared, so even if ω is negative, the result is positive. This makes sense because the acceleration
is always inward in circular motion, never outward.

Page 432, self-check D:
All the rotations around the x axis give ω vectors along the positive x axis (thumb pointing along
positive x), and all the rotations about the y axis have ω vectors with positive y components.

Page 435, self-check E:
For example, if we take (A×B)x = AyBz−ByAz and reverse the A’s and B’s, we get (B×A)x =
ByAz −AyBz, which is just the negative of the original expression.

Answers to self-checks for chapter 17
Page 484, self-check A:
The two graphs start off with the same amplitude, but the solid curve loses amplitude more
rapidly. For a given time, t, the quantity e−ct is apparently smaller for the solid curve, meaning
that ct is greater. The solid curve has the higher value of c.

Page 490, self-check B:
She should tap the wine glasses she finds in the store and look for one with a high Q, i.e., one
whose vibrations die out very slowly. The one with the highest Q will have the highest-amplitude
response to her driving force, making it more likely to break.

Answers

Answers for chapter 1
Page 53, problem 10:
Check: The actual number of species of lupine occurring in the San Gabriels is 22. You should
find that your answer comes out in the same ballpark as this figure, but not exactly the same,
of course, because the scaling rule is only a generalization.

Answers for chapter 6
Page 197, problem 5:
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(a) R = (2v2/g) sin θ cos θ (c) 45 ◦

Page 197, problem 5:
(a) R = (2v2/g) sin θ cos θ (c) 45 ◦

Answers for chapter 7
Page 212, problem 6:
(a) The optimal angle is about 40◦, and the resulting range is about 124 meters, which is about
the length of a home run. (b) It goes about 9 meters farther. For comparison with reality, the
stadium’s web site claims a home run goes about 11 meters farther there than in a sea-level
stadium.

Page 212, problem 6:
(a) The optimal angle is about 40◦, and the resulting range is about 124 meters, which is about
the length of a home run. (b) It goes about 9 meters farther. For comparison with reality, the
stadium’s web site claims a home run goes about 11 meters farther there than in a sea-level
stadium.

Answers for chapter 17
Page 501, problem 6:
Q = 1/

√
2
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Index
acceleration, 101

as a vector, 216

constant, 108

definition, 108

negative, 104

alchemists, 285

alchemy, 13

amplitude

defined, 464

peak-to-peak, 465

related to energy, 481

angular acceleration, 419

angular frequency, 463

angular momentum

choice of axis theorem, 404, 444

defined, 397

definition, 398

introduction to, 395

related to area swept out, 401

spin theorem, 404, 444

angular velocity, 418

area

operational definition, 37

scaling of, 39

astrology, 13

Bacon, Francis, 17

Big Bang, 267

black hole, 323

Brahe, Tycho, 252

calculus

with vectors, 220

cathode rays, 15

causality, 75

center of mass, 60

frame of reference, 375

motion of, 61

related to momentum, 373

center-of-mass motion, 61

centi- (metric prefix), 20

Chadwick, James

discovery of neutron, 371

choice of axis theorem, 404

proof, 444

circular motion, 233

inward force, 239

no forward force, 239

no outward force, 239

nonuniform, 235

uniform, 235

CMB, 268

coefficient of kinetic friction, 161

coefficient of static friction, 160

collision

defined, 368

comet, 461

component

defined, 191

conduction of heat

distinguished from work, 332

conversions of units, 26

coordinate system

defined, 66

Copernicus, 69

correspondence principle, 289

defined, 75

for time dilation, 75

cosmic microwave background, 268

cosmological constant, 267

cross product, 433

damped oscillations, 482

dark energy, 267

Darwin, 16

decibel scale, 482

delta notation, 64

Dialogues Concerning the Two New Sciences,
40

dot product of two vectors, 339

driving force, 485

eardrum, 485

Einstein, Albert, 462

electrical force

in atoms, 371

electron, 371

element, chemical, 286
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elliptical orbit law, 440
energy

distinguished from force, 131
gravitational potential energy, 316
potential, 314
related to amplitude, 481

equilibrium
defined, 412

ether, 87

falling objects, 97
Feynman, 100
Feynman, Richard, 100
force

analysis of forces, 164
Aristotelian versus Newtonian, 118
as a vector, 219
contact, 120
distinguished from energy, 131
frictional, 159
gravitational, 159
net, 122
noncontact, 120
normal, 158
positive and negative signs of, 121
transmission, 167

forces
classification of, 155

four-vector, 349
frame of reference

defined, 66
inertial

in Newtonian mechanics, 134
rotating, 234

French Revolution, 20
frequency

angular, 463
defined, 463

friction
fluid, 163
kinetic, 159, 160
static, 159, 160

fulcrum, 416
full width at half-maximum, 490
FWHM, 490

Galileo, 470
Galileo Galilei, 39
gamma ray, 371

gamma rays, 15
garage paradox, 85
grand jete, 61
graphs

of position versus time, 67

Halley’s Comet, 461
heat

as a fluid, 312
as a form of kinetic energy, 312

heat conduction
distinguished from work, 332

high jump, 63
homogeneity of spacetime, 80
Hooke’s law, 170, 466
hypothesis, 12

inertia, principle of, 71
infinitesimal number, 65
Ives-Stilwell experiment, 303

joule (unit), 290
Joyce, James, 312

Kepler
elliptical orbit law, 440
law of equal areas, 401

Kepler’s laws, 252, 253
elliptical orbit law, 253
equal-area law, 253
law of periods, 253, 255

Kepler, Johannes, 252
kilo- (metric prefix), 20
kilogram, 22
kinetic energy, 295

compared to momentum, 366

Laplace, 14
Leibniz, Gottfried, 65
lever, 416
light, 14
Lorentz transformation, 81
Lorentz, Hendrik, 81

magnitude of a vector
defined, 200

matter, 14
mega- (metric prefix), 20
meter (metric unit), 21
metric system, 20
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prefixes, 20
Michelson-Morley experiment, 87
micro- (metric prefix), 20
microwaves, 15
milli- (metric prefix), 20
mks units, 22
model

scientific, 159
models, 61
moment of inertia, 421

tabulated for various shapes, 428
momentum

compared to kinetic energy, 366
defined, 363
examples in three dimensions, 378
of light, 366
rate of change of, 376
related to center of mass, 373
transfer of, 376

motion
periodic, 463
rigid-body, 59
types of, 59

Muybridge, Eadweard, 213

nano- (metric prefix), 20
Neanderthals, 417
neutron

discovery of, 371
Newton

first law of motion, 121, 140
second law of motion, 125

Newton’s laws of motion
in three dimensions, 193

Newton’s third law, 152
Newton, Isaac, 20

definition of time, 23
nucleus, 371

operational definition
acceleration, 105
energy, 299
power, 299

operational definitions, 21
order-of-magnitude estimates, 47
oscillations

damped, 482

parabola

motion of projectile on, 192
parallel axis theorem, 423, 445, 453
particle zoo, 311
Pauli exclusion principle, 16
period

defined, 463
of uniform circular motion, 240

perpetual motion machine, 173, 286
physics, 14
pitch, 461
POFOSTITO, 154
Pope, 40
positron, 322
potential energy

electrical, 318
gravitational, 316, 343
nuclear, 319
of a spring, 342
related to work, 342

power, 297
projectiles, 192
proton, 371
pulley, 170

quarks, 312

radial component
defined, 242

radio waves, 15
reductionism, 17
Renaissance, 11
resonance

defined, 487
RHIC accelerator, 85
rigid rotation

defined, 397
Robinson, Abraham, 65
rotation, 59

scalar
defined, 200

scalar (dot) product, 339
scale height of atmosphere, 138
scaling, 39
scientific method, 12
second (unit), 21
shell theorem, 262

proof, 268
SI units, 22
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significant figures, 28
simple harmonic motion

defined, 467
simple machine

defined, 170
slam dunk, 61
slingshot effect, 375
spin theorem, 404

proof, 444
spring

potential energy of, 342
work done by, 342

spring constant, 170
Stanford, Leland, 213
statics, 412
steady-state behavior, 486
Stevin, Simon, 289
strain, 169
Swift, Jonathan, 39
swing, 485

temperature
as a measure of energy per atom, 313

tension, 168
theory, 12
thermodynamics, 313
time

duration, 64
point in, 64

torque
defined, 405
due to gravity, 408
related to force, 437
relationship to force, 406

transmission of forces, 167
triangle inequality, 349
tuning fork, 465
twin paradox, 349

unit vectors, 206
units, conversion of, 26

vector
acceleration, 216
addition, 200
defined, 200
force, 219
four-vector, 349
magnitude of, 200

velocity, 214
vector cross product, 433
vector product, cross, 433
velocity

addition of, 72
as a vector, 214
negative, 72

volume
operational definition, 37
scaling of, 39

Voyager space probe, 94

watt (unit), 298
weight force

defined, 120
relationship to mass, 128

work
defined, 332
distinguished from heat conduction, 332
done by a spring, 342
done by a varying force, 341, 462, 465
in three dimensions, 337
positive and negative, 335
related to potential energy, 342

work-kinetic energy theorem, 345

x-rays, 15

Young’s modulus, 183
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Trig Table
θ sin θ cos θ tan θ θ sin θ cos θ tan θ θ sin θ cos θ tan θ

0◦ 0.000 1.000 0.000 30◦ 0.500 0.866 0.577 60◦ 0.866 0.500 1.732
1◦ 0.017 1.000 0.017 31◦ 0.515 0.857 0.601 61◦ 0.875 0.485 1.804
2◦ 0.035 0.999 0.035 32◦ 0.530 0.848 0.625 62◦ 0.883 0.469 1.881
3◦ 0.052 0.999 0.052 33◦ 0.545 0.839 0.649 63◦ 0.891 0.454 1.963
4◦ 0.070 0.998 0.070 34◦ 0.559 0.829 0.675 64◦ 0.899 0.438 2.050
5◦ 0.087 0.996 0.087 35◦ 0.574 0.819 0.700 65◦ 0.906 0.423 2.145
6◦ 0.105 0.995 0.105 36◦ 0.588 0.809 0.727 66◦ 0.914 0.407 2.246
7◦ 0.122 0.993 0.123 37◦ 0.602 0.799 0.754 67◦ 0.921 0.391 2.356
8◦ 0.139 0.990 0.141 38◦ 0.616 0.788 0.781 68◦ 0.927 0.375 2.475
9◦ 0.156 0.988 0.158 39◦ 0.629 0.777 0.810 69◦ 0.934 0.358 2.605

10◦ 0.174 0.985 0.176 40◦ 0.643 0.766 0.839 70◦ 0.940 0.342 2.747
11◦ 0.191 0.982 0.194 41◦ 0.656 0.755 0.869 71◦ 0.946 0.326 2.904
12◦ 0.208 0.978 0.213 42◦ 0.669 0.743 0.900 72◦ 0.951 0.309 3.078
13◦ 0.225 0.974 0.231 43◦ 0.682 0.731 0.933 73◦ 0.956 0.292 3.271
14◦ 0.242 0.970 0.249 44◦ 0.695 0.719 0.966 74◦ 0.961 0.276 3.487
15◦ 0.259 0.966 0.268 45◦ 0.707 0.707 1.000 75◦ 0.966 0.259 3.732
16◦ 0.276 0.961 0.287 46◦ 0.719 0.695 1.036 76◦ 0.970 0.242 4.011
17◦ 0.292 0.956 0.306 47◦ 0.731 0.682 1.072 77◦ 0.974 0.225 4.331
18◦ 0.309 0.951 0.325 48◦ 0.743 0.669 1.111 78◦ 0.978 0.208 4.705
19◦ 0.326 0.946 0.344 49◦ 0.755 0.656 1.150 79◦ 0.982 0.191 5.145
20◦ 0.342 0.940 0.364 50◦ 0.766 0.643 1.192 80◦ 0.985 0.174 5.671
21◦ 0.358 0.934 0.384 51◦ 0.777 0.629 1.235 81◦ 0.988 0.156 6.314
22◦ 0.375 0.927 0.404 52◦ 0.788 0.616 1.280 82◦ 0.990 0.139 7.115
23◦ 0.391 0.921 0.424 53◦ 0.799 0.602 1.327 83◦ 0.993 0.122 8.144
24◦ 0.407 0.914 0.445 54◦ 0.809 0.588 1.376 84◦ 0.995 0.105 9.514
25◦ 0.423 0.906 0.466 55◦ 0.819 0.574 1.428 85◦ 0.996 0.087 11.430
26◦ 0.438 0.899 0.488 56◦ 0.829 0.559 1.483 86◦ 0.998 0.070 14.301
27◦ 0.454 0.891 0.510 57◦ 0.839 0.545 1.540 87◦ 0.999 0.052 19.081
28◦ 0.469 0.883 0.532 58◦ 0.848 0.530 1.600 88◦ 0.999 0.035 28.636
29◦ 0.485 0.875 0.554 59◦ 0.857 0.515 1.664 89◦ 1.000 0.017 57.290

90◦ 1.000 0.000 ∞
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Mathematical Review
Algebra

Quadratic equation:

The solutions of ax2 + bx+ c = 0
are x = −b±

√
b2−4ac

2a .

Logarithms and exponentials:

ln(ab) = ln a+ ln b

ea+b = eaeb

ln ex = eln x = x

ln(ab) = b ln a

Geometry, area, and volume

area of a triangle of base b and height h = 1
2bh

circumference of a circle of radius r = 2πr
area of a circle of radius r = πr2

surface area of a sphere of radius r = 4πr2

volume of a sphere of radius r = 4
3πr

3

Trigonometry with a right triangle

sin θ = o/h cos θ = a/h tan θ = o/a

Pythagorean theorem: h2 = a2 + o2

Trigonometry with any triangle

Law of Sines:

sinα

A
=

sinβ

B
=

sin γ

C

Law of Cosines:

C2 = A2 +B2 − 2AB cos γ

Properties of the derivative and integral (for
students in calculus-based courses)

Let f and g be functions of x, and let c be a con-
stant.

Linearity of the derivative:

d

dx
(cf) = c

df

dx

d

dx
(f + g) =

df

dx
+

dg

dx

The chain rule:

d

dx
f(g(x)) = f ′(g(x))g′(x)

Derivatives of products and quotients:

d

dx
(fg) =

df

dx
g +

dg

dx
f

d

dx

(
f

g

)
=
f ′

g
− fg′

g2

Some derivatives:
d

dxx
m = mxm−1, except for m = 0

d
dx sinx = cosx d

dx cosx = − sinx
d

dxe
x = ex d

dx lnx = 1
x

The fundamental theorem of calculus:∫
df

dx
dx = f

Linearity of the integral:∫
cf(x)dx = c

∫
f(x)dx

∫
[f(x) + g(x)] =

∫
f(x)dx+

∫
g(x)dx

Integration by parts:∫
fdg = fg −

∫
gdf
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Useful Data

Metric Prefixes

M- mega- 106

k- kilo- 103

m- milli- 10−3

µ- (Greek mu) micro- 10−6

n- nano- 10−9

p- pico- 10−12

f- femto- 10−15

(Centi-, 10−2, is used only in the centimeter.)

The Greek Alphabet

α A alpha ν N nu
β B beta ξ Ξ xi
γ Γ gamma o O omicron
δ ∆ delta π Π pi
ε E epsilon ρ P rho
ζ Z zeta σ Σ sigma
η H eta τ T tau
θ Θ theta υ Y upsilon
ι I iota φ Φ phi
κ K kappa χ X chi
λ Λ lambda ψ Ψ psi
µ M mu ω Ω omega

Subatomic Particles

particle mass (kg) radius (fm)
electron 9.109× 10−31 . 0.01
proton 1.673× 10−27 ∼ 1.1
neutron 1.675× 10−27 ∼ 1.1

The radii of protons and neutrons can only be given approx-

imately, since they have fuzzy surfaces. For comparison, a

typical atom is about a million fm in radius.

Notation and Units

quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
density kg/m3 ρ
velocity m/s v
acceleration m/s2 a
force N = kg·m/s2 F
pressure Pa=1 N/m2 P
energy J = kg·m2/s2 E
power W = 1 J/s P
momentum kg·m/s p
angular momentum kg·m2/s or J·s L
period s T
wavelength m λ
frequency s−1 or Hz f
gamma factor unitless γ
probability unitless P
prob. distribution various D

electron wavefunction m−3/2 Ψ

Earth, Moon, and Sun

body mass (kg) radius (km) radius of orbit (km)
earth 5.97× 1024 6.4× 103 1.49× 108

moon 7.35× 1022 1.7× 103 3.84× 105

sun 1.99× 1030 7.0× 105 —

Fundamental Constants

gravitational constant G = 6.67× 10−11 N·m2/kg2

Coulomb constant k = 8.99× 109 N·m2/C2

quantum of charge e = 1.60× 10−19 C
speed of light c = 3.00× 108 m/s
Planck’s constant h = 6.63× 10−34 J·s
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